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Abstract. In this paper we introduced and developed the theory of Modified Interior Distance
Functions(MIDFs).

The MIDF is a Classical Lagrangian (CL) for a constrained optimization problem, which is
equivalent to the initial one and can be obtained from the latter by monotone transformation both the
objective function and constraints.

In contrast to the Interior Distance Functions (IDFs), which played a fundamental role in
Interior Point Methods (IPMs), the MIDFs are defined on an extended feasible set and along with
center, have two extra tools, which control the computational process: the barrier parameter and the
vector of Lagrange multipliers. :

The extra tools allow to attach to the MIDFs very important properties of Augmented
Lagrangeans. One can consider the MIDFs as Interior Augmented Lagrangeans. It makes MIDFs
similar in spirit to Modified Barrier Functions (MBFs), although there is a fundamental difference
between them both in theory and methods.

Based on MIDFs theory, Modified Center Methods (MCMs) have been developed and
analyzed.

The MCMs find an unconstrained minimizer in primal space and update the Lagrange
multipliers, while both the center and the barrier parameter can be fixed or updated at each step.

The MCMS convergence was investigated, and their rate of convergence was estimated. The
extension of the feasible set and the special role of the Lagrange multipliers allow to develop MCMs,
which produce, in case of nondegenerate constrained optimization, a primal and dual sequences that
converge to the primal-dual solutions with linear rate, even when both the center and the barrier
parameter are fixed. Moreover, every Lagrange multipliers update shrinks the distance to the primal
dual solution by a factor 0 < y < 1 which can be made as small as one wants by choosing a fixed
interior point as a "center" and a fixed but large enough barrier parameter.

The numerical realization of MCM leads to the Newton MCM (NMCM). The approximation
for the primal minimizer one finds by Newton Method followed by the Lagrange multipliers update.

Due to the MCM convergence, when both the center and the barrier parameter are fixed, the
condition of the MIDF Hessians and the neighborhood of the primal minimizer where Newton method
is "well” defined remains stable.

" It contributes to both the complexity and the numerical stability of the NMCM.

"Partially supported by NASA Grant NAG3-1397 and NSF Grant DMS-9403218
1



1. Introduction.

In the mid 60s, P. Huard [ BuiH66], [Huar67a] and [Huar67b] introduced Interior Distance
Functions (IDFs) and developed Interior Center Methods (ICMs) for solving constrained optimization
problems. Later these functions, as well as Interior Center Methods, were intensively studied by A.
Fiacco and G. McCormick [FiacM68], K. Grossman and A- Kaplan [GrosK81], R. Mifflin [Miff76),
and E. Polak [PolE71], just to mention a few.

It was found [PolE71] that there are close connections not only between the IDFs and the
Barrier Functions [FiacM68], but also between ICMs and methods of feasible directions [Zout60],
(ZPP63).

The ICMs consist of finding at each step a central (in a sense) point of the Relaxation Feasible
Set (RFS) and updating it in accordance with the objective function level that has already been
attained. The RFS is the intersection of the feasible set with the Relaxation (level) set of the objective
function at the attained level. In the Classical ICM the "center" is sought as a minimum of the IDF.

Interest in the IDFs, as well as in the Barrier Functions (BFs), grew dramatically in connection
with the well known developments in mathematical programming during the last ten years since N.
Karmarkar published his projective scaling method [Kar84)]. In fact, his potential function is an IDF
and his method is a Center Method, which produces centers of spheres, which belong to the feasible
polytop. The concept of centers has a long and interesting history.

In the 60s, concurrently with P. Huard's ICM, the Gravity Center Method was independently
developed by A. Levin [Lev6S] and D. Newman [New65), the Affine Scaling (ellipsoid centers)
Method by I. Dikin [Dik67), and the Chebyshev Center Method by S. Zuchovitsky, R. Polyak and
M. Pimak [ZPP69]. The Affine Scaling Method, which one can view as a method of feasible direction
with special direction normalization, was rediscovered in 1986 independently by E. Barnes [Barn86]
and R. Vanderbei, M. Maketon and B. Freedman [VanMF86] as a simplified version of Karmarkar's
method.

In the 70s, N. Shor [Sh70] and independently D. Yudin and A. Nemirovsky [YuN76]
developed the ellipsoid method, which generates centers of ellipsoids with minimal volume
circumscribed around some convex sets. Using this method, L. Khachiyan [Kh79] was the first to
prove in 1979 the polynomial complexity of the Linear Programming problem. His result had a great
impact on the complexity theory, but numerically the ellipsoid method appeared to be not efficient.
It is interesting to note that the rate of convergence, which was established by I. Dikin [Dik74] for
the Affine Scaling Method, in case of nondegenerate linear programming problems, is asymptotically
much better than the rate of convergence of the ellipsoid method and numerically, as it turned out,
the Affine Scaling Method is much more efficient [AdRVK89].

The concept of centers became extremely popular in the 80s. Centering and reducing the cost
are two basic ideas that are behind the developments in the Interior Point Methods (IPMs) for the last
ten years. Centering means to stay away from the boundary. A successful answer to the main

‘question: how far from the boundary one should stay, was given by Sonnevend [SonSS] (see also
[JarSS88]) through the definition of the analytic center of a polytop. The analytic center is a unique
minimizer of the Interior Distance Function. The central path - curve, which is formed by the analytic
centers, plays a very important role in the [PM developments. It was brilliantly shown in the paper
by C. Gonzaga [Gon92].

Following the central path J. Renegar [Ren88] obtained the first path-following algorithm



with 0(vnl) number of iterations against 0(nL) of the N. Karmarkar's method.

Soon afterwards, C. Gonzaga [Gon88] and P. Vaidya [Vaid87] described algorithms based
on the centering ideas with overall complexity 0(r'L) arithmetic operations, which is the best known
result so far.

In the course of the 30 years history of center methods it became clear that both the theore-
tical importance and the practical efficiency of the center type methods depends very much on the
"quality" of the center and on the cost to compute the center or its approximation.

The center was and still is the main tool to control the computational process in a wide variety
of center methods in general and in [PMs in particular.

However, still there is a fundamental question, which has to be answered: how consistent the
main idea of center methods - to stay away from the boundary with the main purpose of
constrained optimization - to find a solution on the boundary.

In this paper we will try to address this issue. The purpose of this paper is to introduce the
Modified Interior Distance Functions (MIDFs) and to develop their theory. Based on this theory, we
are going to develop the Modified Center Methods (MCMs), to investigate their convergence and
to establish their rate of convergence.

The MIDFs are particular realizations of the Nonlinear Rescaling Principle [Pol86], which
consists of transforming a constrained optimization problem into an equivalent one and using the
Classical Lagrangean for the equivalent problem for both theoretical analysis and numerical methods.
In the case of MIDFs, we transform both the objective functions and the constraints by monotone
transformations. The constraints transformation is parametrized by a positive parameter. The MIDF,
which is a Classical Lagrangean for the equivalent problem, has properties that make it substantially
different from both IDF as well as Classical Lagrangean for the initial problem.

Instead of one tool (the centers), which controls the process in the IDF, the MIDF has three
tools: the center, the barrier parameter and the vector of Lagrange multipliers. Two extra tools
provide the MIDF with very important properties.

The barrier parameter not only allows to retain the convexity of the MIDFs when both the
objective function and the constraints are convex, it also allows to "convexify" the MIDFs in the case
when the objective function and/or the constraints are not convex but the second order optimality
conditions are satisfied. The barrier parameter is also crucial for the rate of convergence of the
MCMs.

The other critical extra tool is the vector of Lagrange multipliers. It allows to attach to the
MIDFs nice local properties of Augmented Lagrangeans [Ber82], [GolT89], [Hes69], [Man75},
[Powé69], [Rock74] and provides them with new important features.

One can consider MIDFs as Interior Augmented Lagrangeans. However, in addition to the
nice local Augmented Lagrangean properties, the MIDF's possess important global properties, which
manifests itself when the Lagrange multipliers are fixed and one changes the barrier parameter and/or
the center to approach the solution.

What is most important, the MIDFs are defined and keep smoothness of the order of the initial
functions on the extension of the feasible set.

The special MIDF's properties allows to develop MCMs, which produce the primal-dual
sequences that converge to the primal-dual solution, even when both the center and the barrier
parameter are fixed. Moreover, under nondegeneracy assumptions the primal and dual sequences



converge to the primal-dual solution with linear rate.

So the main driver in MCMs is the vector of Lagrange multipliers rather than the center or
the barrier parameter. It allows not only to stay as close to the boundary as one wants, it makes
possible for the primal minimizer to be even outside of the feasible set. At the same time, in constrast
to the IDF, the solution of the constrained optimization problem is always inside of the level set of
the MIDF.

So at the final stage, the MCMs are closer to the multipliers methods rather than to IPM.
As far as the initial stage is concerned, when the vector of Lagrange multipliers is fixed, then one can
take advantage of the global-self concordance [NesN94] properties of the IDF, which guarantee a
very reasonable convergence by following the central path, which one obtains by changing the barrier
parameter or the center.

The numerical realization of the MCMs leads to the Newton MCM. In contrast to the IDF,
the MIDF Hessian not only exists on an extended feasible set but due to the MCMs convergence,
when both the center and the barrier parameter are fixed, the condition number of the MIDF Hessian
is stable and so the neighborhoods of the primal minimizers, where the Newton method is "well”
defined [Sm86).

It contributes to substantial reduction of the number of Newton steps per Lagrange multipliers
update from step to step. Every update shrinks the distance to the primal-dual solution by a fixed
factor 0 < y < 1, which depends on the input data and the size of the problem. It can be made as small
as one wants even when both the "center” and the barrier parameter are fixed, but the parameter is
large enough.

The paper is organized as follows. After the statement of the problem, we discuss the IDF's
properties and introduce the MIDFs. Then we establish the basic MIDF's properties at the primal-
dual solution and compare them with the correspondent IDF's properties. Then we prove the basic
theorem, which is the foundation for the MCMSs and their convergence. We describe the MCMs and
analyze their convergence.

The MIDFs have some common features with Modified Barrier Functions [Pol92], but there
are fundamental differences between them as well. We illustrate the differences using a few small
examples.

Then we describe the Newton MCM, which is a numerical realization of the MCM.

We conclude the paper by considering dual problems, that are based on MIDF. They have
some distinctive features, which we will discuss briefly. :



’ 1. Problem Formulation and Basic Assumptions. Let fi(x) and -f{(x),{ = 1,..m be convex,
* C? -function in R® and there exists
x* = argmin {f(x)/xeQ} (1.1)
where Q@ = {x:f(x) 20, i = 1,.,m}.
We will assume that Slater condition holds, i.e.
3x%:f(x)>0,i=1,..n (1.2)
So the Karush-Kuhn-Tucker's (K-K-T's) optimality conditions hold true, i.e. there exists a vector

u' = (4,.,4,) 20" suchthat

L' (x‘u®) = flylx") - E:lu,'f"(x =0, f(x"u, =0, i=1,.,m, (1.3)

where L(x,u) = f;(%) - iu, /,(x) is the Lagrange function for (1.1) and
[ () =gradfx), i = o‘,;n are row-vectors. Let J* ={i:f(x*) =0} ={1,.r} is the active
constraints setand r < n.
We consider the vector-function f(x) = (f;(x),.../,(*)),the vector-function of active
constraints £,(x) = (f,(x),../,(x)) and the vector-function of passive constraints f(..,(x) =
(£ 1S 3)).
We also consider their Jacobians f/(x) = J (fx)), &) =J (,®), S'u-n® =J (im-n®)),

diagonal matrices U = [disgu, ], , U, =[diagu,][,; withentriesu,,i =1, .., m and Hessians

J,
’ (x) = ! i=0,1,..m,
it ) |éﬁ|‘ s Jn

t=1,..n



of the objective function and constraints. The sufficient regularity condition

rankf’(,)(x‘)=r, u'>0, iel* (1.4)

together with the sufficient condition for the minimum x’ to be isolated

(L" _(x*,u')z,2)2A(z2), A>0 Vz#0 :f’(,)(x‘)z=0’ (1.5)

comprise the standard second order optimality condition, which we will assume in this paper.
We shall use the following assertion, which is a slight modification of the Debreu theorem (see [Pol
92)).
Assertion]l Let A4 be a symmetric 7 x n matrix, B be an r x n matrix, and
U= [diagu,]f_‘ ' R’ -R;, where ¥ = (u,, ..., 4,) > 0" and let
(Ay.y)2A(yy),A>0,vy By=0
Then there exists k, > O such that for any 0 < u < A the following inequality
(A+kBTUB)x,x) 2 p(x,x), YXeR"

holds true whenever & 2 k,.

2. Interior Distance Function. Let y € int Q and a = f,(y), we consider the Relaxation Feasible Set
(RFS)onthelevel a : Q(a) = QN{x:/(x) s a} and aninterval T={t:a<t<a’=f(x*)

The Classical IDFs F(x,&) and H(x,a) : Q(a)x T— R! are defined by formulas

F(r,a) = -min(a -£() - f; Inf(x) ; Hxa)=m(a-f())"+ g/f'(x)

Let us assume that In ¢ = -» and ! = » for ¢ < 0, the Classical Interior Center Methods



(ICMs) consists of finding the “"center” of the RFS by solving the following unconstrained
optimization problem
2 =%(a)=argmin {F(x,a)/xe R"}

é.nd updating the objective function level a , i.e., replacing a by Q= 13(9 ) . Dueto
x-930(a) = F(x,a)~= thenewcenter 2(a)eintQ(x)<Q for any a €T
Moreover, if the IDF possess the self-concordance properties (see [NesN 94]) the central trajectory
{2(a), « € T} has some very special features (see [Ren 88] and [Gon 92]).

Starting at a point close to the central trajectory - "warm" start - for a particular a € 7 and
using Newton step for solving the system

F, (xa)=0"

in x following by a "careful® « update, one can guarantee that the new approximation will be again
a "warm" start and the gap between the current level a = £, (x) and the optimal level a® = £ (x") will
be reduced by a factor 0 < g, < 1, which is dependent only on the size of the problem.

However along with these nice properties the IDFs have their well known drawbacks. Neither
the IDFs F(x ,a) and H (x, &) nor their derivatives exist at the solution. Both F (x ,a) and H (x ,a)
grow infinitely when 2(a ) approaches the solution.

" All constraints contribute equally to IDFs and one can obtain the optimal Lagrange
multipliers only in the limit when 2(a)—x* . What is particularly important for nonlinear
constrained optimization is the fact that the condition number of the IDF Hessians vanishes when the
process approaches the solution. Let‘s consider this issue briefly, using F (x, «). Keeping in mind the
boundness of the RFS Q (a) oﬁe can guarantee that the unconstrained minimizer Reint Q(a)

exists and



= /%)
F' (Ra)= ' (%) - { = 0 (2.1)
or
-3 2hE g 2.2
[ ‘21‘ mft(g)f,(ﬁ)-o' (2.2)
We define
8 =8(a)=(a-£,RNmf, BN, i=1,.m 2.3)

and consider the vector of Lagrange multipliers dnti(a) = (Q‘ (z),i=1,..,m), then (2.2) can be
rewritten as follows:

L8 =7, @) - 2 21 @) =r, @) -if (%) =0

Ao BfB)=(@-f,EIm?, i=1,.m So f;l?‘j;(ﬁ)sa-j;(f).

Under the uniqueness assumptions (1.4) - (1.5) we have

lim fi(z)=u", lim #(a) =x"
a0’ a—.q‘

Let's consider the Hessian F”_(x, @ ). We obtain

F" (R,a)=f" (& 3 a.j;@) /1 « f( ) 2)
=(Za)=f" (%) - § ) 7% - § f(f) r@
/
Further, for any i = 1,..., m, we have /1l = S @) =f,0) (2 -£,)
mj;(x) j?(x)



Therefore

-3

=l

O gy f LB o S BAB) 1o
( (9)) ]’f ®=2 “ni® DX N

-————(f’(i’))’E « S8 gy 3 2R HB) L vy ®)

%) R R - YOO
-1 /AW S 4 3 (W (2
o SO L A gf‘ VEDIE)

Let D(x) = [ diag f,(x) 1) . U(e) =[ diag u (@) ]}, then for the Hessian FJ)3 a)
we obtain

F'_ @) =L"_3.2) + /AW U@D @) + —,
a -f(D

v*,,(:?n"):: S(a),(®

Inviewof 2 =2(a)~x*, #=10(a)-u" weobtan

LY @0 -1 (x"u"), @I f; 81 (@) ~£T(x W=,

@ -raey, 0-v', DE-Dx="



Therefore

F/_@a) = L7 (") + (e W E@ ) + @ 4N Ty @D

where E(a) =[ diag & («)J]., and

lim &(x) = lim 8,(a) £, R(@) = += (2.4)
a—a’ a—a’

The mineigval F”_(2, a) is defined by the first two terms (2.3), therefore in view of (2.4)

due to the Assertion 1 with 4 = L"_(x", u) and B = f", (x") there exists p >0 :
mineigval F”_(2,a) = p

At the same time due to (2.4) we have maxeigval F”_(2,a) -~ = when a~ a’. Therefore the
condition number of the Interior Distance Functions Hessians vanishes when % approaches x". The
consequences of the ill -conditioning is much more substantial in nonlinear optimization than in Linear
Programming. In case of LP the term L”, (x, w ) in the expression for the IDF Hessian disappears and
by rescaling one can practically eliminate the ill-conditioning effect, at least, when the problem is not
degenerate.

In nonlinear optimization the situation is completely different and the ill conditioning was and
still is an important issue both in theory and practice. To eliminate the ill conditioning of the IDF we

will introduce the Modified Interior Distance Functions.

3. Modified Interior Distance Functions We consider a vector y € int QadA(yx)=

10



Jo () - f, (x ) > 0, then the Relaxation Feasible Set (RFS):
Q) ={x:f(x)20,i=1,..m ; A(y,x)>0!}
The problem (1.1) is equivalent to
x* = argmin {f,(x) /xeQ ()} 3.1

It is easy to see that for any k> 0
QO) ={x:k"[In(kf,(x) + A(y,x)) -lnA (3,%)]20 i=1,.m; A(yx)>0}.
. Therefore the problem (3.1) is equivalent to the following problem:

x* =argmin{-ln A (y,x)/xe Q()} 3.2)
Assuming In 7 = - for t < 0 we define the MIDF F(x, y, u, k):

R*xintQ xR ™xR_'~R!asaClassical Lagrangean for the equivalent probiem (3.2):

F(x,y,uk) = (-1 +f" f:u, YlnA(y,x) -k} f:u, In(kf,(x) + A (v,x)) (3.3)
i=1 {=]

The MIDF F ( x, y, u, k) corresponds to vthe IDF F ( x, @ ). To define the MIDF, which corresponds
to H (x, a ), we first note that for any £ >0 |
QO) ={x:k '[RG+ AQx) ! -2 0,050, i=1..m, A(yx)>0}
~ Therefore the problem (1.1) is equivalent to
x* =argmin {A'(y,x)/xe Q()} (3.4)
Assuming ' = for ¢ s 0 we define the MIDF H(x,y,u,k): R*xintQ xR " xR ! -R!
as a Classical Lagrangean for the equivalent problem (3.4):

H@x,yuk)=(-1+k! }-:u,) A'(y,x) + k7! iu, *kf,x) + Ax)! (3.5)
=1

i=]

11



The MIDF (3.5) corresponds to the P. Huard's IDF H (x, a). Both F (x, y, , k) and H (x, y, u, k)
are Classical Lagrangeans for problems equivalent to (1.1), which we obtained by monotone
transformation both the objective function and the constraints.

Finally, the MIDF Q (x,y,u,k) : R* x intQ x R * xR ! = R!, whichis defined by formula

QU k) = (0N E o 1 (ko) 8 i)™
corresponds to the potential function
0x,a) = (s AN 7).

So, wehave F(x,y,u, k)=InQ(x y, 4 k) and all basic facts about F ( x, y, 4, k) remain true for
Q (x, y, u, k), therefore we will not consider the MIDF Q (x, y, u, k) further in this paper.

There is a fundamental difference between the Classical and Modified Interior Distance
Functions. First we are going to show the difference at the local level - in the neighborhood of the

primal-dual solution. In the next section, we will consider the local MIDF's properties.

4. Local MIDFs Properties In contrast to the IDFs, the MIDFs are defined at the solution, they
do not grow infinitely when the primal approximation approaches the solution and under the fixed
optimal Lagrange multipliers, one can obtain the primal solution by solying one smooth unconstrained
optimization problem.
Proposition 1. Forany #>0and any y € int Q, the following relations are taking place.

Pl. F(xyu'k)=-lnA(yx*) ie f(x*)=f,(y) - exp( -F(x*y,u'k))

and |

H(x*yu' k)=A"px%) ie f(x)=£0) -H Y (x*yu'k)

The property Pl follows immediately from the definition of MIDFs and the complementary

12



conditions for the K-K-T's pair (x",u"):
u'f(x*)=0, i=1.m
The fact that the MIDF's value at (x",u") coincides with the optimal objective function value
for the equivalent problem independently on both the center y € int Q and barrier parameter ¥ > 0
indicates that one can approach the solution by means other than those, which have been traditionally
used in the [PM developments.
Proposition 2. Forany k>0 and any y € int Q, the following relations are taking place.
P2. F'_(x*yu'k) =A'Ox*)L/ (x*u*)=0
and
H' (x*,yu'k)= A2(yx* )L (x*u")=0
The proposition 2 immediately follows from the definition of MIDF's and K-K-T's conditions.
If k> X u the unconstrained minimizer of F (x, y, u’, k) or H (x, y, 4" k) in x is a solution of the
convex programming problem (1.1), i.e., the following property is taking place.
p ition 3
P3. x* = argmin { F(x,y,u* k) /xeR"} = argmin { H(x,y,u* k) /xeR"}
In other words, the knowledge of the optimal Lagrgnge multipliers allows us to solve the problem
(1.1) by solving one unconstrained optimization problem. Therefore if F ( x, y, u, k) is strongly
convex in x and we know a good approximation u for the vector u*,then R =20, uk)=
argmin { F(x,y,u,k) /xeR"} is a good approximation for x° while both the "center” y € int 2 and
k> u, are fixed.
If by using % we can improve the approximation , then it is possible to develop a method

where the convergence is due to the Lagrange multipliers update rather than due to the center or the

13



barrier parameter update.

Our goal is to develop such a method, but first we will try to understand under what
conditions the MIDFs F (x, y, 4, k) and H (x, y, u, k) will be strongly convex in x when both y and
k > 0 are fixed.

The following proposition is the first step in this direction.
Proposition 4 . If f(x)eC?,i=0,1,.,m, then for any fixed y € int Q, k>0and any

KKT's pairs (x’, u”) the following is true:
P4 F/' (x*'yu'k)=A"0x)[L ')+

A7 0ux YR @ DU, L&) = i Waigy gy iy D]

and
H” (x*yu'k)=A203) L .G 0"+

AT x YR & I U L@ ) = (e Wty gy D]

The proof is given in the Appendix Al. We are now ready to prove the first basic statement.
Theorem1l. If f(x)eC?,i=0,1,.,m,then for the convex programming problem (1.1) the
following statements are true:
1) for any fixed y € int Q and k> X " the function F (x, y, u, k) is strongly convex in the
neighborhood x" if one of the functions f, (x) or -, (£), i = ,..,.7 is strongly convex or sufficient
regularity conditions (1.4) are taking place andr=n;
2) if none of f, (x)and - f;(x), i =1,...,r are strongly convex and r < n, but the second

order optimality conditions (1.4) - (1.5) are fulfilled then there exist k, > 0 large enough that for any

14



fixed y € int Q and any fixed k> A(y, ¥*) k, + L u,” there exist such that p > 0 and M < + = that

“the following is true :

P5. a) mineigval F”_(x*yu'k) 247 (n,x")p
b) maxeigval F"/_(x*y,u k) < Aty x )M

Proof 1) Using P4 for any v € R* we obtain

F/_(x*yukyvy) = AT x YL (e * uHvv) +
A 3,2 YL & ) Uy @ I0V) = (o Wty 8y & DV0)]
= AT x )L YY) + A0 ) (k- Zu)) (e W UL ) v)

+ A7 0,3 ) (Cu)Ex () - o' )V

Taking into account identity
) Ew' (6P - /(" D) @)
i= i= =
T > w' u' (& -1,6). v 20
tel J=l
we obtain
(F”z(x .,y,ll .,k)V,V) 2 A-l (y»x ‘)[(L ”z(x .’“ .) (42)

+ A7 ) (k- Zu) (W U, Sl Vvl

So for a convex programming problem (1.1) the function F (x, y, u’, k) is convex in x for any

yeintQandka2Xu .

15



Ifone of f, (x), -/, (x),i=1,..,r are strongly convex thenduetou,’ >0 ,i=1, . rthe
Classical Lagrangean L ( x, u”) is strongly convex in the neighborhood of x* while the matrix
(k-Zu’) A 0x ) (f(x "N U, f",,(x *) is non negative defined for any y e int Q and
k 2 X u, therefore F (x, y, u’, k) is strongly convex in the neighborhood of x°. If £, (x ) and all
-f,(x)are convex then L ( x, u” ) is convex in x, if addition (1.4) is satisfied and r = n, then for any
ye int Qandk 2 £, the matrix (k-Zu,") A~ (5,2 ) ([, (x )T U, f(x*) is positive defined
and again F (x, y, u", k) is strongly convex.

Note, dueto f(x)€C?,i=0,1,..,m the MIDF F(x, y, u", k) will remain strongly convex
in x for any u € R,® close enoughto .

2) Now let's bonsider the case when none of £, (x) and - f, (x ),_ i=1,.,r are strongly

convexand r<n. If k> A U,x Yk, + Yu,’, then due to (4.2) we obtain

F"_(x*yuk)vv) 2 A" 0 )L, u")
(4.3)

M ko (f,(’)(x t))f Ur.f ,(r) (x ‘) ] V,V) » V Ve n'

Therefore if the second order optimality condition (1.4) - (1.5) are satisfied, then due to the Assertion
Iwithd =L” (x*,u') and B =/’ (x*) for k,> 0 large encugh, any "center” y e int Q and

any k> A (5,x*)k, + Lu," there exists >0 :

F" _(x*yukyvv)zAt(x)p(vy), VveRt (4.4)

It is also clear that for a fixed y € intQ and fixed k¥ > A (¥, x*) k, +X u,” there exists M <«

F" _(x*.yuk)yvyv)s At (xIM(vyv),Vvelk® (4.5)

16



Lele
Theveeen | L&
So the condition number of the Hessian F™_ ( x°, y, u"k ) is fixed at the K-K-T's pair (x°, u") and due

to f, (x) € C*? it remains to be true in the neighborhood of ( x°, y*) for any fixed "center” y € intQ
and any fixed barrier parameter £ > A (y, x" ) k,+X u,” .

'gmu‘ The second part of the theorem 1 remain true even for nonconvex problem if the
second order optimality conditions are satisfied. In other words the barrier parameter & not only
allows to retain the convexity in x of the MIDF F (x, y, u, k) but also provide convexification of the
F (x, y, u, k) in x in case when the Classical Lagrangean L ( x, ) for the initial problem is not
convex inx € R.".

Remark2.  Theorem 1 holds true for the MIDF H ( x, y, u, k). For any y € int Q and any fixed

k205k,A (y, x)+X u’, there exists p > 0 and M < = that for V ve R* the following is true:

3) H”g(x'y,u',k)v,v)zA'z(y,x')([L”B(x'y‘)
(N U )& Dvv) 2820 Y uvv),

b) H” (x'yu‘'k)vyv)sAd?(,x*) M(v,v)

5. Modified Center Method It follows from the Theorem 1 that to solve a constrained optimization
problem for which the second order optimality conditions are fulfilled, it is enough to find a minimizer
for a strongly convex and smooth in x function F(x, y, u’, k) with any fixed y € int Q as a "center"
and any fixed £ > A (y, ") k,+ Z u,". Due to the strong convexity of F(x, y, u, k)in xto find

an approximation to x° it is enough to find a minimizer

£ =20, u,k) = argmin{ F(x,y,u,k) /xeR"} (5.1
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for a given Lagrange multipliers vector u € R..® close enough to u’, when both y and & are fixed.
Moreover, as it turns out, having the minimizer £ one can find a better approximation ii for the

vector u* without changing both y € int Q and £> 0.

Let's consider it with more details. Assuming that the minimizer 2 exists, we obtain

F'@yuk)=(1-k'Zu +k'EHLO-TaL @) =0 (5-2)

where the components of the new vector of Lagrangean multipliers il = i (y,u,k) are defined by

formulas:

2 o uk) =u 8 0.3) kSE) + A 3,2)7, i=1,..m

Letd (x, y, k) =k f (x) + A(y, x) then for the Lagrange multipliers update we have the following

formulas

2 Guk)=u 8 @24 Ak, i=1,.m (5.3)

Formulas (5.3) are critical for our further considerations.
First, we have 2 (% *,y,k) = u* for any fixed y € int Q and properly chosen k>0, i.e. uis
a fixed point of the map u - & (uy,k). |

Second, we will show later that for the new vector il the following estimation:

18-u'lsckta@x®) lu-u'l (5.4)

holds, and ¢ > 0 is independent on y € int Q and k>0, where [x | =|x }_ = max |x,|.

1gizn

Third, it turns out that the estimation (5.4) is taking place not only for # but for the minimizer
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2 as well i.e.

18-x1scktApx) lu-u'| (5.5)

In other words, finding a minimizer ¥ and updating the vector u € R.." is equivalent to applying to
u € R." an operator :

Co: C, 4= d(uyk) =14

Note that C,, " = u" . The operator C, , isa contractive one if

ICMu-u‘|=|C“(u-u‘)|<|u-u‘|

The contractibility of C, , is defined by

ContrC, , = yy_; =cklA(yx*)

The constant ¢ > 0 depends on the input data and the size of a given problem and independent
on y and k. We will characterize the constant ¢ > 0 in the course of proving the basic theorem.
So, for a given problem, the contractibility 0 <y, , <1 depends on the "center" y € int QQ and the
barrier parameter & > 0. |

'I‘he'indepa:denoe c onyand k makes possible to reduce v, , > 0 to any apriori given level
5yincreasingk>0 under the fixed y, or reducing 4 (y, x”) under the fixed k or by changing both
the "center" y € int © and the barrier parameter k£ > 0 in the process of solution.

In particular, for any "center” y € int £ and any given0 <y < 1, one can find such a barrier

parameter k> O that the operator C, , will shrink the distance between current approximation (x, )
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and the primal dual solution ( x°, ¥”) by a factor 0 <y < 1. Now we will describe the basic version
of the Modified Interior Center Method. The convergence and rate of convergence will be considered
later.

Westart withyeint Q , 4’ =e, =(1,..,1)e R"and k> m. Let's assume that the couple
(x*, u*) has been found already. Take k£ > ¥ u, then the next approximation ( x*', u'") we find

by formulas:

x**! = argmin { F (x,y,u ",k)/x e R*} (5.6)
utu =y’ A Onxyd (x k) i=l,..m 5.7

First, let us consider conditions for the problem (1.1), under which the method (56)-(57is
executable.
To simplify our consideration, we assume
Al inf f(x)>-

x€R"
We also assume that the set of optimal sohxtidn.;z for the problem (1.1) is not empty and bounded, i.e.
A2. X* = Argmin {f,(x) /x € Q} » 0 is bounded.
Taking into account the Corollary 20 ( see [Fiac M68] p 94) and assumptions Al - A2, we conclude
that the set Q, () ={x:kf(x) +A (nx)20, i=],.m; A (3,x)>0} is bounded for any
yeintQandk >0. Alsox -3 Q, ()= F(x,5,u * k) = w therefore for any u* € R..", y € int Q
and k> ¥ u,” the function F(x,y, u*, k)is convexinx € Q, (¥), and the minimizer

x™' = argmin { F(x,y,u’ k)/xeR" }
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exists. Therefore

FlaLyu'k)y=(1-k'Zu' + k' Zu ) (Y -Zu/ fx*!) =0 (58)

and the vector u*' e R, if u‘eR."
Hence, starting with a vector 4’ € R,." one can guarantee that the Lagrange multipliers will remain
positive up to the end of the process without any particular care about it.
Before discussing the convergence results we would like to describe briefly the dual interpretation
of the MCM (5.6) - (5.7).
Let's consider the dual function

h(u)=inf {L(x,u)/xeR"}
and the dual problem |

h(u)) = max {(h(u)/ueR"} (5.9

Along with the Classical Lagrangean L(x,«) for the initial problem, we will consider an approximation
for it

L(xuu'k)=(1-k"Zu’ +k'Zu)f(x)-Luf(x)
Note that L (xu/,#,k) =L (x,u"). We also consider an associated with L (x, u,u’ k) approximation
for the dual function

h(u u' k)=inf (L (xuu'k)/xeR"},
which is equal to the dual function A () when u = u*,i.e, h (u* u’, k)=h(u’) for any k> 0.
Along with the dual problem (5.9) we consider the following convex programming problem

max {h(u, u’, k)/ueRS"}

The function h (u, u*, k) is concave in u € R," and due to (5.8) L, (x", u™' , u' k)=0.
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Therefore L (x~', u™', u’, k)=h(u"', u’, k). For the subgradient of h (u, u’, k)atu”™" we
have
M(u™ , u k)=k'f,(x"" e, -f(x"") (5.10)
j(x) = (f; (¥),....fo (x). Using formulas (5.7) for the Lagrange multipliers update, we obtain
Sy = kA (uT ) AR S (T ) e -k S (0 e (5.11)
where « (u™')' =(u/ (u;'),.., w'(u,")").
So in view of (5.10) and (5.11) we obtain
Sh(u™, u' k)=-k1A @ x™) o (u) -kt S (7 e
or
Gh(u™t, u'  k)+ kA (e )Yk f(0)e,=0
Therefore
u'! = argmax (A (w,u’,k) + k' Tu ' [A(x* ") Inw, (4')"
(5.12)
+f,008,@! -0/ ueRl}
The method (5.12) has some similarities with the prox-method with eutropy-like kernel (see
[PolTeb95]), which corresponds to MBF (see [Pol92]), however, there is a fundamental difference
between them as well. In contrast to the prox-method, which corresponds to MBF, the dual to MCM
is dealing not with the dual objective function A (1), but with an approximation h(u u’ k)toh(u)
Therefore the convergence results for MBF method cannot be applied to (5.12).
We will obtain the convergence results for the method (5.12) as byproduct of the correspondent
results for MCM (5.6) - (5.7).

These results will follow from the Basic Theorem, which we are going to prove in the next section.
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6. Bagsic Theorem . The Basic Theorem establishes the contractibility properties of the operator
C, ;. We will start by characterizing the domain, where the operator C, , is defined and possesses
these properties. Let's consider a small enough number t > 0, a fixed y, € int Q and a subset
Q_={x:f{x)2te}N{x:A (y),x)>0}of theRFS Q (y). Note that due to Al - A2 and the
Corollary 20 (see [FiacM68]) the set Q, is bounded. We will choose the "center” y from Q,. For any
ye Q, wehave A (¥, x°) > 0. Along with t > 0 we consider a couple of small numbers ¢ > 0 and
8 > 0 and a large enough &, > 0. In the course of proving the Basic Theorem it will become clear
what "small" and "large" mean.

To characterize the domain, where the operator C , , is defined, we will consider two types
of sets.

The first type

D(*)={(y,u,k):u,2¢,|u-u'|sd Ay x )k, k2k, A(,x*)+Xu}i=1,.r

is related to the active constraints.

The second type is associated with the passive constraints.

D (*)={(uk):0su s8 A (y,x ")k, k2k, A (1,x°) +Xu'i=r+l,..m

Theset D (s ) =D,(s ) x...x D, (%) x... x D, () is the domain, where the operator C,, is
defined.

We will prove later that for any fixed y € Q, there exists , > O that for any k 2 &, A(yx)+Xu

‘the operator C, , is a contractive on D (+).

For a fixed yeQ, and a fixed k 2 k, A(y.x") + L «,, the domain D (¢) shrinks (see Fig.1) to

-7rl r n
(]y.k - Uy.k X roe x Uy.k X .o X Uy.k .

We are particularly interested in the set U, , , because as soon as both the "center" y and the

23



barrier parameter & are fixed, the set U, , is the only feasible set for the Lagrange muitipliers,
" moreover if C, 4 is a contractive operator then we U, ,=deU,,.
Before we turn to the Basic Theorem, let's briefly describe the main idea of the proof. In

view of A1-A2 for any ueR.",y € and k>¥ u,there exists the MIDF's minimizer 2=20,uk)

and
F!Gyuk)=fi (8) - TAL(R) - h(Ry,u,k) + gBy,u,k) = 0 6.1)
=]

where
B =ud@dd ' Gub), i=1,.r, (6.2)
rGyuk) = T u 0,84 CybL@)

tupe]
and

gGyuk) =k El u(-1+4 0D d GrA®)

Considering (6.1) and (6.2) asa system of equations for # and &, , it is easy to verify
that # = x"and Qm = u(:) satisfy the system forany ye Q,, ¥>X u/, and u = u,
Moreover for any triple (y, &, k) € D (+) , the system (6.1)- (6.2) can be solved for % and ﬁ(’) .
Having the solution # = 2(y, 4, k) and = ﬁ(,) = r?(,)(y, u, k) one can find the Jacobians
2! () =, (30, u,k)) and &, (+) =J,(8,,(,u,k)) and estimate
12/ (u k) | and 18, 0ou".0) |
It turns out that under second order optimality condition, there is such k, > 0 that for any
yeQ,and k2 k,A(yx")+ Xy the following estimation

max{ |3/ u’,E) 1, 18,0 k) l}sc (6.3)
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takes place and ¢ > 0 is independent on y and k.

Due to the continuity 9.’ (+) and Q(',)_ (¢) in u the estimation (6.3) is taking place in the
neighborhood of u” .

In view of x* =X (y,u‘,k) and u' = # (y,u",k) and using (6.3) one can estimate
|2-x"] and |4 -u"*| through Ju-u‘].

The independence ¢ > 0 on y and k makes possible to prove that for any fixed y € Q. there
exists &,> 0 such that for any & 2 k,A(y.x") + Z 4, the operator C, , is a contractive one, i.e.
0<y,,<1, therefore ueU,, = C,, u= ie U,

In the «course of proving the Basic Theorem we will assume
min{f(x*)/ i=r+l,.,m}=0>0,min{A (y,x*)/yeQ }=7,>0,0" be thep xq
zero matrix; /” be the 7 » ridehtity matrix, S(a,e) ={xeR*:]x -a ] s e} Weremind that
d,(x,y,k) = (kf,(x) + A (y,x))and introduce three diagonal matrices d(x, y, k) =

[dlag d‘(x»y’k) ](-1» d(,) (x»y:k) = [diag d‘(x|y9k) ]:-l’ d(.-,) (x,y:k) = [ diag d‘ (x,y, k) ]1-:"[-

Theorem 2. 1. If Al - A2 are taking place, thenforany y e Q,,u € R and k> X 4, there
exists 2 =2 (y,u,k) = argmin { F(x,y,u,k) /x e R*}: F/(8,y,u,k) = 0*.
2.If f,(x) € C?, i=0,..,m and standard second order optimality conditions (1.4)-
(1.5) are taking place then:
a) for any triple (¥, u, k) € D (+) the minimizer £ = 2 (y,,k) exists,
F,’ (Ry,4,k) = 0*and for the pair ¥ and i =4 (y,u,k) the following estimate
max{|®-x'], 18-u'l} scktA(x*)lu-u'} (6.4)

holds and ¢ > 0 is independent on y and k .
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b) for any fixed ye Q,and k> k,A(y.x")+ X u’,the MIDF F(x, y u k) is
strongly convex in the neighborhood of ? and for any u e U, . there exists

>0 and A<= :

mineigval F,_./: Ayuk)2Aat xR (6.5)
maxeigval F. (Ry,u.k) s A" (y,x 321 (6.6)

Proof 1) In view of the assumptions Al - A2 and the Corollary 20 (see [Fiac M68] p94) the set
Q,00) ={x:kf(x)+A(),x)20,i=1,.,m; A(),x)>0} isbounded forany ye Q,and & >
0. Alsoxed Q,(y)= F(x, y,u' k)~  therefore forany ye Q , ue R,,."and_k>£u,the
function F(x, y, u, k)isconvex in xe Q,(y)and ® = f(y,u_,k) is an unconstrained minimizer
of F(x,y,u k),ie F;(?,y,u,k) =0,

2) For technical reasons, we introduce a vector ¢ = (#,,..,1,) 4, = k1A (3x*) (4, -u,')
instead of the vector of Lagrange multipliers u,then u = u” =¢ = O™ . Such transformation translates
the neighborhood of 4" into the neighborhood S(0,8) ={¢: |7, | s 8 , i=1,..,m} of the origin
of dual space.

We will split the vector i on two parts, which correspond to the active and passive constraints.
Let Q(’) = (ﬁ, , i=1,.,r) is & vector of Lagrange multiplier, which corresponds to the active
constraints, while 0(__') = 9(__') (x,y,t,k) = (l’l\‘ (x,y,t,k), i=r+1,..,m) is the vector of Lagrange
multipliers, which corresponds to the passive contraints.

Wetave £, (x,5,0,k) = kA (5x*) 1, A(h3) 4, (xp, ) 1=rel,um, &= (8,8, ) md

for the vector function A (x, y, u, k), g (x, y, 4, k) we will have the following replacement.
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h(x,y,tk) = 51 8, (e 68) (0 = (B, (59,6 6) e @)

{=pe

{=]

gxy.Lk) =k {i ke, A 0 x*) +u') [ -1 + AGx) 4, (n1,h)] }U:(x))’

So for any > 0, small enough e,> 0 and yeQ  the vector functions A (x, y. £, k)and g (x, y, 1, k)
are smoothinx € S (x°, e;) and 7 € S (0,8). Then we have h(x*y,0,k) =0*, g(x",y,0,k) =0*,
hl(x*.y,0,k) = 0™ g/(x*,3,0,k) = -A" (3, x " )f'T(x*)f5 (x ) also h o (" 2.0,k) = 0™
and g’;m(x *%,0,k) =0%.0n S(x*,e,) xS(u;), 2,) x Q_x5(0,8) x (0, + ) we consider the
map ® (x,8,,y,0,k) : R *7*"*1 - R**" defined as follows:

® (52,00 = {7 () - E8,7T() - hGxnth) + 8O0);

kA (kA (0, x*), + 1) A(,x) d,"(x,y,k) -] , i=1,.r}
Taking into account (1.3) and A(x", , 0, k) =g(x", y, 0, k) = 0" we obtain

@ (x°,u,,»,0,k) =0 for any k>0 and yeQ,.

Let @0 = &' o (x%ugy0,0,8), Ly = L(x " u ") =/ (x ") foy =fin ()
U’ =(diagu, Y. .u,=,1=1,.r). )

) fr e . _ TP
In view of h_(x°*,,0,k) = 0**, h’;“(x 3,0,k) =0~" g.(x"*,y0,k)

= - AT 0 T (xR (), £, (7,%,0,F) = 0 we obtain

Ll -A"0x"sh -1’5

. nd o (x*u,,0yk) =
k) ¥ (ry 'U:j(J,) -k_lA(y,x.)I’

Now we will prove the nondegeneracy of the matrix @, ,, for any y € int Q, and any

k2k,A(y,x")+ X u’ Letusconsider w=(2z v)eR""", then the system D, »W=0"""canbe
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rewritten as follows:

Llz- At 0x Y5z S v =0" 6.7
U,'j(f,)z-k"A(y,x')v =0 (6.8)

We find v from (6.8) and substitute in (6.7). Taking into account the K-K-T's condition

Sflo=u'(, f ", we obtain

Llz+ A" 0x") (GU oy - oy ey 4oy )1 2= O

ie.
(L'2,2) + A 0V KU, fiy2.£y2) - (U foy 21 =0
The inequality
k2k,A(yx)+Zu/
implies

(Llz,2) + A7 0x ) (KU, fiy 2 S 2) = gy Sy 2]
2(L'2,2) + A" (0 x ) [k, A2 ) (U, £y 2 Sy 2)
+ (Zu' YU, fiyzSip2) = (i fy 2]
= (L2,2) + kL (FTUp Sy 2.2) + A7 03 ) [Eu ) (Ew (2P - (T (. 2)Y ]

Due to identity (4.1) we obtain (Zu,")(Zu," (ff,2)) - (Zu," (,z))? 2 0. Therefore taking into
account Assertion 1, we have 0 = ((L,: + koj"(';)U(:)j(J,))z, z)2u(z2z),n>0,ie z=0" hence
from (6.7) we obtain f'7,, v =0, so due to (1.4) we have v =0, i.e. O, , W= 0™ =-w=0"", ¢
@, is a nonsingular matrix.

Let k, be large enough. We consider a compact

28



K={0*1x{(nk):yeQ k 2k2kA()x") +Xu'}

‘Since & (x ',Q(,),y,o,k) = 0**, the matrix Qy' ;= d"';m (x ',u(:), y,0,k) is nonsingular,
f(x)€C?,i=1,..,m and K is compact, it follows from the second implicit function theorem
(see [Ber82]p.12) that there is a small enough & > O that in the neighborhood
S(K,8)={onek): |1 |8,
i=1,..m,yeQ_ kel[k A(,x*) + Ly, Kk]lofthe compact X there exist unique continuously
differentiable vector - functions x(*) =x(»,4,k) = (x, ), 1,k), ..., *, (O, t,k)) and
&, () =8, O0nt.k) = @, 0, k), .. 1,(5,1,k)) such that x(3,0,k) = x4, ,(3,0,k) = u,
and for any triple (y, ¢, k) € S (K, 8) there is g, > O that

max { Jx(y.6,k) -x‘| , Iﬁ(’)(y,t,k) -ugllse, (6.9)

The identity

® (x(0,68),8,0.1,k),3.4k) = @ (x(+), By (*), ) = O* (6.10)
holds true for all (y, & k) e S (K, 9).
‘So we obtain
FEG) = EBLWTE) ~h(x(2),2) + (4),0) (6.11)
=A@ E(NF(xC)yuk) = 0"
which is the necessary optimality condition for the vector x (<) tobe a minimizer of the function

F(x y, u, k)in xunder the fixed (y, u, k). Also from (6.10) we obtained the identities
(o) (KA (x ), +u,) A 0.x(+))d, (x(+),3,k) i=1,.,r for the Lagrange multipliers
that corresponds to the active contraints.

After multiplying both sides by k"' A(y, x), it can be rewritten as follows:

(t,+kTA(Qxu)A 3,x(+))d, " (x(*) 2, k) -k A2 () =0 r=1,.,r (612)
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The Lagrange multipliers that correspond to the passive constraints , we can rewrite in the following

way:

8 (x(0),)m () =kA ' x ), A (A (x()YK) i=r+lm (613)

let #

(m~r

()= (), 1=r+1,..m and HOEICROR N O)}
To prove the sufficient optimality condition for the vector x () to be a minimizer of the function
F(x y, u k)in x under fixed (y, 4, k) we will show later that the function F (x, y, 4 k)is
strongly convex in the neighborhood of x (¢) for any (y, 4, k) € D (). But first of all we will
ascertain the estimation (6.4).
To this end let us first prove that for small enough & > 0 and large enough £, there exists p >0 such
that the inequality

I(0’,,;“(x(°).9(,,(°),°))" I<p (6.14)
holdstrue forall (¢, y, k) e S(K &)

We consider the matrix

L -atoxtss -7

&, =0 . (x',u,,0y,)=
. =) %% 2T ryp T2 * rr
? - U'jzlr) 0

The matrix @, .., is nonsingular for any y € Q. . Infact, for a vector w =(z, v ) € R"" " the system

@, ., Ww=0""
can be rewritten in the following way
L,:z-A"(y,x‘)f’:j;z -f’(f)v=0“ (6.15)
U f,2=0 | (6.16)
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Because of u", ,,> 0" from (6.16) we obtain f’(,)z =0, ie (/;’.z) =0,i=1,.,r, therefore
("L:; u,'j;/, z)= (jol,z) = 0. Multiplying (6.15) by z we obtain

(L,:z,z)-A“(y,x‘)(ﬁ,/,z)z—(v,f('i)z)=0 | (6.17)
Le.

(L,’,:z,z) =0, Vz:j(':)z=0’
so due to (1.5) we have z = 0" then from (6.14) one obtainsf"(,, v = 0", which due to (1.4) implies
v=0"
Therefore, @, .,w=0"" implies w=0""for any y € Q. i.e. the matrix ® , ., is nonsingular, so
there exists a constant p > 0 independent of k and y € Q, such that
|°(.;.-)| $Po

Hence, for the Gram matrix G, , = @&., ®,,,, We have mineigval G, ., = 4, > 0. Then there
exists a large enough k, > 0 such that forany ye Q,and k2 k, A(yx" )+ L u ie k' A(yx") <

k," we obtain for the Gram matrix G

r . )
o) > <b0,_,) °(y.t) the inequality

mineigval G, ,,2 %2 Ko
and p, > 0 is independent of y € Q,and ke [ k,A(y.x") + E 4/, k, ]. Therefore &, ,, is not only
nonsingular, but there exists a constant p > 0 independent of y € Q , and k 2 k, A(y.x") + L u; such
that
-1 -1 .

l °(y.b) ' = l ‘Iﬁ“ (x()’.o.k) ’ g,(y:oak)) I £p (618)
The last inequality implies (6.14) if 8 > 0 is small enough. Now we will prove estimation (6.4). First
let us estimate the norm | ﬂ(a_,)’(o) l
Due to (6.9) for any small enough 8 > 0 there exists such small enough &,> 0 that for

V(y.tk)eS(K,38)
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max{ | £, x(0s4E)) = £(x(3,0.8)) |, 1/, (x0168)) = £,(x(50.F)) | i=r+1,..m} s e,
Therefore, in view of f, (x") 2 o > O for the passive constraints , we obtain
[(x(,Lk)) 2 % >0, i=p+1,.,m and for the Lagrange multipliers, that correspond to the passive
constraints we have
u,(0.0k) = u, (L) - £, E))) » (RGOLLE)) +£,(0) -LG0.60)!
=u(f,(0) ~f,(x°) +£f,(x*) L (xO, LD [KS(x°) -k (x°) -/, (x(0.,F)))
+£f,00) -G - G(xO0E) -, N
su(f(0) ~f(x*) + ) (Kf(x°) - (k+1)ey + () -LHGN!

ap
< —;-'1 0D ~fE" + e (fx) -k (k + 1)eg + B (G0 -

Hence, for small enough e, < —;— k(k +1)! we obtain

20 A£G AuG0) -4ED)
Ho - 3+ (G0 =G NE ko

-

, i=r+l..om

u(e)=u (k) s

So we have

0y 0D =y 1§ 2 BV 0) =5 Ny = o !
Now we will show that the estimation (6.4) holds for 2(3,4,k) and &, (y,5,k) =
(8, 0n4,k), 1= 1,.., 7). To this end we differentiate the identities (6.11) and (6.12) with respect
tor.Letx,(#) = J,(x(+)) = (5/,(+),7 =1t} , By, (#) = J, (4, (+)) = (B (o), i=1,.,7) are
the Jacobians of the vector functions x(+) and #,(*). Also L(x(*), & (*) =fo(x(*)) -

Z': 0,(0)1;(1(-)) and let J,(h(x(*), *)) and J (8(x(%),*)) are the Jacobians of the vector
t=1 :
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functions A(x(*),*) and g(x(+),*). Then differentiating (6.11) with respect to 1 we obtain:

L7 (x(o) 8, ()%, (+) = Uy F () ()

=J,(h(x(e),*)) +J,(g(x(*),*) =0
n
F{¢10)
Let F,x()=r| ... | P(x(e),y,t.k) = [diag(¢, + k' u’ A (3, x D] ¥
S (x(+)

(6.19)

[ - dg! (x() BV F,, (x(+) - kA (3,3 (+N s (x(*).1. ) (x(*)
+ A(x(2)) 2 dgy (x().2.8) Fipy (x(*))]

then differentiating (6.12) with respect to ¢ we obtain

P (x(),p,t, k)% (*) - kA (,x ) ()
(6.20)

- (A x(2)) *dgy (x(*) 3. k) ; 07" ] = S(x(), )
Now we consider Jacobians J,(h(x(*),*)) and J,(g(x(*), *)) in more detail.
Recall that
AEOLLE.YLE) <h(3(+),2)= T li?,(xw.-)cr,’(:r(-»)’=(u(,..,,(::(o).- fomory (X ()

{=pe

Therefore
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J(R(x(#),*) =h)(x(+), )%/ (*) + h/(x(+),*)

N O DGO R AN O) AN IO DI EXOR

{=rel

LT N[0 kAT (3,x VA (1 x(* )y (x ()3, )] =
N(x(e),*)x/ () + q(x(*), *)

Taking into account x(,0,k) =x*, & ,(x*,»,0,k) =u =0, i=r+1,..m,
lim-ry.s ®(2,0,k),,0,k) = 0" we obtain N(x°,,0,k) =0"" and q(x*,y,0,k) =

L @O kdg (2B

Now let us consider the Jacobian

J(2(x(#),*)) = 2 (x(+), )%/ (*) *+ &/(x(*), )
=g!(x(s),9)%/(+) + A"V (,x*) F,] (x(*)) [ diag K/, (x(+ D(RA(*)) + A7 Ox(+N]T

=g/ (x(2),*)x,(*) +p(x(*),*)
For the Jacobian g’, (x (¢ ),* ) we obtain
gl (x(¢),0) =kt [{il (ke A7 (3,3 (e) + 1) (-1 + AG (N, G N 15 (x(+)

kT () [ }'% (kA 0nx ) + 1) x (- H (DD, (Z(D,k)
- A x(NE 2 E (B RL (2 () - R(x(M] = G(x (=), *).

L

Taking into account (1.3) and x(»,0,k) =x*, [ diag (kt,A"(y,x Y+u ) o = U, >
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n
5 |
F =F (x(Oyk)=m| . | Weobwn
L(x*)
GG 08) = - A I T (3 95,

p(x*,0,5,k) = A" (n,x ) [0~ , Fo_, [ disg kf,(x ") d, " (x*.y.B)I, ]
Therefore,

J(2(x*.3,0,E) - A7 (0,2 )5 (x )5 () X/ (0,0,k) + p(x°,0,3,k)

T(x .’y’o’k) =- Ur‘j(Jr)(x ‘)-S(x .ay»otk) = [ I > 0”.-’]

q(x "3, 0k) =k [0 fIT (x*) dgu(x°.3.0) ]

We recall that
L (M 1)+ 0
n r
n Lg,: (x(°), g(')(o)) +G(x(*),*) + N(x(*),*) _f/(I")(x(.» ]
4 ?(x(.)a.) -k'lA(y,x‘)Ir

Then combining (6.19) and (6.20) we obtain

m
n x,'(o) =(¢i:”(.))-x n[q(x(.),.)-p(x(.),.) =@i.~“(-))“R(x(°).°)- (6.21)
AUAVO Pl 8G9
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Now we consider the system (6.21) for ¢ = 0®. Taking into account

L7 (x(5,0,k),8,,(5,0,k) = L/ (x*,u*), G(x(2,0,k),5,0,k)
= - (L0) - AW (x4 (x"), N(x(,0,k),,0,k) = 0",
P(x(,0,k);2.0.k) = - U f,(x"), 4(x(.0.B);,0,k) = g(x*,3,0,k)
=k 0V L (2 de (53 E) 1, p(x(3,0,K),,0,k) = p(x*,y,0,k) =
[0~ Fi_,(x*) [ diag;(x)d, (x*. 3,001 1,

S(x(»,0,k),y,0,k) = S(x°,y,0,k) =(-1",0"""")

we obtain the following system
/
x, (3,0,k) o |9(=%»0k) - p(x",y,0,k) 3
A ‘ =% . = 05 R(x"5,0k). (622)
u(r).;(ysotk) S(x oy’opk)
Therefore
max { | x/(5,0,k) 1, 12}, ,(,0,k) 1} s 1 ®1, 1 |R(x*.,0,)1. (6.23)

Taking into account min {A(yx')V ye Q,} = t,>0,

I[disg ((x) + £ 80Wx N Pyl s 07,
[ disg ((x)(,(x ) +E AOWx N P I 5 1,

one obtains
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1g(x*40,E) 1< o™ 1L ,(x) 1, 1p(x*.3.0.6) | s %' | Fa,y (x ) 1,

1S(x*.0,,k) [ 51 and |R(x*%.0,E) Is 0™ IS y(x) 1+ 55" 1 Fmp(x) 1 + 1.
In view of (6.18) and (6.23) we have
max { 13/ (5,0,6) I, 18,,0,0,6) 1} s p(1 + 07 1A/, (x) 1+ %5 1 Fa,(x) 1) = ¢,
So there exists a small enough 8 > 0 such that for any (y, £, k) € S (X, & ) the inequality

1@, cOratk), B, (.etk);patb) ' R(x(ratk); y,ask) |
(6.24)

$2p(1+ 0 I f'L GO+ %0 | Fuy(x) 1) = ¢4

holds true for any 0 < @ < 1. Also we have

x(yn.t,k) -x(»,0,k)
& onek) -8,0,0.8)|

[0 07, (50t k), B, a0 &Lk RGOr88R); D) [1]da

From (6.24) and (6.25) we obtain

max {1 X/ 0,k) - x* 1, 16,0 0k) ~ug D sco Ll =ck ' AQx) lu-u’|.
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Let 20,u,B)=x(,k A (,x Y (w=u*), k), B0, u.k) = (4, (k" A, x ) (u -u’).k),
8y 0rk Ay, x")(u -u"),k) and ¢ = max{c,,407"}, then

max{ |20 uk) -x 1, 180 u,k) -u* P sck'A(Q,x") lu-u'l.

So we ascertained the estimation (6.4). Also £(y,u *,k) =x* and #(y,u*,k) = u * follows from
(6.4) for any triple (, u", k) € D (+) i.e. 4’ is the fixed point of the mapping u - i(y,u,k).
3) Now we will prove that F (x, y; u, k) is strongly convex in a neighborhood of
2=20,u,k) for any (y,u,k) e D(*). |
Using the formula for F,”/(2,y,u,k) (see Appendix A2 ) and taking into account the estimation (6.4)

we obtain for a small enough 8 and for any triple (y, u, k) € D (¢ ) that

F'@yuk) = A YL u") + A7 0ux ) (b7 gy (3 VU, Sy () =1 (2 WG (x )
cRAGE N NE @, -u) TR+ (2 -u)f (9]

For any triple (y, u, k) e D (*) we have k 2k, A (y.x) + Yu' and
k' u -u'|< 8A(y,x"),i =1,..,m Keeping in mind min {4 (y,x)| y€ Q.}= 7> 0 for

any ve R" we obtain

(F/@y.u,k)v,v) 2 A 03 Y((LL(x 8 ") + B LGU Sy (5 DVY)
+ AT O Y (C 1) W5 U, iy (5 ) = 115 (x gy ey (3 NV )
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~(RA NV E (4 - | (xR -k T u - | () (x)V,V)
2 AT x MULL(x " u") + ko S (2 VU Sy (2 DV,¥)
- 3meg' (55! (G (3 VP + () (3 )WV

So due to Assertion 1, there exists a &, large enough such that
(FLRyukvv) 2 A7 0 ) n(vv) - 855" m(ze' (H(x ) v + (5 (x ). W)]
So for small enough & > 0 and any triple (y, 4, k) € D (+ ) there exists 0 <fi <p.:

F!@yuk)yv,v)2 A @xYi(v,v), VveR®
" ieforY(y u k)eD (e ),_We have

mineigval F/(2y,u,k) 2 A (,x ")}
To complete the proof we note that for any triple (. u, k) € D (+ ) we have
kT s (Tu )b A3 ) +Zu) +8mA T (0,3 ) s (E) (Bt + ) v meg

t0

m(1+(Zu) (k™)

function F(x, y, u, k)isconvexinxe Q,(y)forany (y, u k)€ D (). Hence the vector

Therefore if 0 <8 < then k'L u, <1 .So for small enough & >0 the

2 = 2(y,u,k) is a unique minimum of the function F (x, y, , k) in Q, () and F!Ryuk)=0.
Due to the definition of F (x, y, ¥, k) we obtain R = argmin { F(x,y,u,k) | xe R*}.

Using the formula for F,”($,,u, k)one can find M such that for any triple (v, u, k) € D ()
the estimate (6.6) is taking place.

We completed the proof of the basic theorem.

Remark 3.  All statements of Theorem 2 remain true for the MIDF H (x, y, u, k). To prove it

we consider instead of ® (x,4,,3,4,k) the mapping @, (x4, 3,4 k) : R2eremclprr
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defined by

&, (60 30k = (7T(x) - £ 8,£7() - h(xytk) + g(x1.1 k) ;
i=]

ETAx ) [(RA O x ), + 1) A2, x) 4, 2 (23 k) - 8,10 = 1,.,7)
where

hGytk) = T 8@y )Y,

(sre]

=l

gyt E)= kM T (kA x ) +u) [ -1 + A2 x) 4, (23,0 ] (5 (=)

and

2 (x,y,0.k) = kA 2(xy*) 1, A2(),X) dixyk),i=r+l,.,m

The MIDFs and MBFs [ see(Pol 92)] have some common features, however, there are essential
differences between them as well.

We will consider few small examples to illustrate some of the differences.

7. Examples. Let us consider a convex programming problem
x* =argmin {f;(x) =x|fx)=-x*+x20}=0 7.1)
The corresponding Classical Lagrangian is L(x,u) = x - u( -x2+x), then Lx'(x ‘u')=

1+2u'x* -u*=0, iie. u*=1. The feasible set Q ={x: -x?+x20}=[0,1].Now
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we fixed 0 < y < 1, then the following problem
x*=argmin{ -In(y -x) |k [In(k(-x3 +x)+y-x)-In(y -x)] 20,y>x}

is equivalent to (7.1) and the corresponding MIDF is:

F(x,y,u,k) = -ln(y -x) -k 'u[ln(k(-x2 +x) +y -x) - In(y - x)]
=(-1+ukHin(y-x) -k luln(k(-x2 +x) + (¥ - x))

So F(x,y,u' k) =(-1+kMHn(y-x) -k In(-kx?+(k-1)x+y) and
Flxyu'k)=(1-k)(y-x)"+(2x-1+k™)(-kx? +kx +y - x)"!, therefore
F_(x" y, 4", k)=0. Let us consider F", (x, y, u’, k). We obtain F", (x, y, u’, k) =

(1-k Y (y-x)2+(2kx2+2(y-x) +4x-2kx +(k-1Pk (- kx? f(k-l)xéy)-z.
Therefore F./(x*,y,u*,k) = (2y + k- 1)y " and taking y = & and k = '4 we obtain
F'_(x"; % ;u",'%)=-16, ie. the Classical Lagrangian for the equivalent problem is strongly
concave at the solution, while problem (1.7) is convex and the Classical Lagrangian L (x, 4°) = x* for
problem (1.7) is strongly convex at the solution x* = 0 = argmin L (x, u°).

Moreover, I-‘(J:,-l-,u‘,l)tln(l -x)-2In(-x? -x+-l-) +2In2, s0 f'orx=l -e
8 2 8 4 8

s N U FOIRTRIPITPIPS IEC SIDY SRS | -
we obtain F(; e, 3oV ,2) Ine - 2In( (8 e)? (8 e)+4)+2ln2
Ine-2In(3e-e?+-L)+2In2=F(e). Therefore inf F(x,+,u°,L)=inf F(e) = - =.
4 64 Osxsl 8 27 4-0

This example shows that without the condition k£ > ¥ u,” Theorem 1 and Proposition 3 are invalid
even for the convex programming problem.

In case of Modified Barrier Function the situation is different. For the MBF which corresponds to
(7.1) we obtain F(x,4,k) =x - k'uln(k(-x2 +x)+1) then F(x*,u" k) =f,(x*) =x"' =0

Fl(x*,u*,k) =0 and Fl(x*u*k)>0,x* = argmin {F(x,u*,k) | x € R!} forany k>0i.e.

41



the Proposition and the first part of Theorem 1 remain true in the case of the MBF for any £> 0 if
the problem is convex.
As for the MIDF F (x, y, u, k) then the Proposition 3 and the first part of Theorem 1 are true only
if k>Xu.
As far as the Theorem 2 is concerned then the results for the MBF remain true for MIDF only if
k2 kyA(yx") + X u,, however instead of the estimation
max{|®-x"L18-u"1}sck u-u'}| (7.2)
(see [Pol92] p185 ) for the MBF, we obtain the estimation (6.4) for MIDF, i.e.
max{|2-x*L 18-u'l}scktA(Qx)lu-u’].

Therefore one can improve the convergence as compared to MBF method by choosing a fixed
yeQ, that A(yx") < 1. Now we will show that it is possible for all statements of Theorem 1 and
Theorem 2 to remain true, even when the functions f( x ), i = 1,..., m are non-concave.
To show this we consider the following problem:

x* =argmin{fj(x) =x|f{x)=e” -1 20} =argmin{x| -e*+1<0}=0 (73)
The function f (x) = - € + 1 is strongly concave, therefore, the Classical Lagrangian
L(xu)=x+tu(-&+ l)isstronglyconcaveformy u>0. ThenL,’(x‘,u) =0=m1-u=0ie
u'=1,30L(x,u*)y=x-¢e*+1 andinfL(x,u") =~ moreover infL(x,u)a-afpranyu>0.
Now let us consider the MIDF, which corresponds to problem (7.3). We obtain F (%, y, u, k)=
-ln(y-x)-ku(ln(k(e*-1) +y-x)-In(y-x)) = (-1 +k~'u)In(y -x) -k'u
In(k(e*-1) +y -x). So F(x,y,u*,k) = (-1 +k)In(y-x) -k lln(k(e*-1)+y~-x),
Fl(nyput ) = (1-E ) (-2 - (e* -k )(k(e*-1)+y=-2)" and F,(x",you ", k) =0

for amyy >0 and k> 0. Then F/(x,y,u", k) = (1 -k )(y-%)2 + (k-2)e*-(y-x)e*+k™)
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(k(c’-1)+y-x)’)" and F:(x ‘yu'k)y=(k-y-1)y 2 Therefore forany y 2 t >0 and
any k> y+1the MIDF F(x, y, u’, k) is strongly convex in a neighborhood of the solution

x" = argmin {F(x, y u k)|y>x} =0 while the Classical Lagrangian L (x, u) =x-¢& + 1 is
strongly concave in the same neighborhood and min L (x,u ‘Ys -0,

Now we would like to make’a few comments ab:mt the estimate (6.4) and its relation with the

corresponding estimate (7.2) for the MBF. Let us consider the matrix @, ,, for problem (7.3). We

have
y -k
-1-y' -1 1 k-y-1  k-y-1
o = . ,09 = :
o) i -kt .5 -k k(y+1)
k-y-1 y(k-y-1)

It is easy to see that ¢ (x", .0, k) =p (=", », 0, k) = 0 and

q(x*,y,0,k) -p(x ‘,y,O,k)] . [ 0 ]

R(x*,,0,k) = .
(x*,5,0,k) [ S(x*.0,0.8) -

Therefore, taking into account (6.22) we obtain

k
Yo.0.b)| . k-y-1
[o‘(y.o’k)lso(y.l)R(x ,y,O,k)' ) kg *1)
| y(k-y-1))]

For all (y, 4, k) € D (+) there exists

2 =2(y,u,k) = argmin { -In(y-x) -k 'u(ln(k(e*~1) +y -¥) - In(y-x)) |y>x}
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Alsofor? and 0 = 8(yu k) = (v -2)(k(ef-1) +y - and r=y|u-u"|k"! smallencugh
wehave |2 -x°| s2k(k-y-1)"e, |d-u" | s 2k(y+1)(y(k-y-1))¢, ie. the following
estimations
|2 -x | s2y(k-y-1)" [u-u’| (7.4)
|18 -ut|<s2(p+1)(k-y-1)"u-u"| (7.5)
holds true.
Now we apply the MBF to the same problem (7.3). We obtain F(x,uk) =x -k " uln(k(e *-1) +1).
So F(x*u* k)=fy(x*)=0, Fl(x,u' k) = 1-e*(k(e*-1)+ 1), F,(x"u".k) =0,
F/(xuk) = (k-1)ue*(ke*-k+1)? and F (x'u"k) =k - 1 Note that for any k> 1 the
MBF F(x u’, k) is strongly convex at the solution while the Classical Lagrangian L (x, u’) =

x - € + 1 is strongly concave. Then (see [Pol92] p185)

1 k

LB -1 k-l -k"l
-1 ’ob =
_,,fl kl -1 -k __k k
k-1 k-1
0
R(0,k) = . therefore
, X . ;
(0,k) k-1
¢ -1
®, R(0,k) =
[Q(Ok)] t k
k-1

Due to Theorem 1 ( see [Pol92 1) for all (4, k) € D (o) there exists L=R(u,k)=

argmin {F(x,u %) |xeR"} and for ® and { = u(k(e?-1) + 1) the following estimations
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|9-x‘|52(k-1)"|u-u‘|, (7.6)
& -u*|<s2(k-1)" |u-u"| .7
holds true. Comparing the estimation (7.4) and (7.6) we find that the extra tool in the MIDF has an
essential influence on the rate of convergence for the primal sequence. By changing the "center" y it

is possible to speed up the convergence of the primal sequence even with fixed parameter k>0.

8. Shifted Interior Distance Function (SIDF) The SIDF one obtains from the MIDF by setting

u=e=(l,.,1) e R", ie. the SIDF, which corresponds to F (x, y, u, k) is defined by formula:

0 (538 = Fix e = (-1 0k m) (50 ~£,() - £ E I (kf,(x) +£60) £500)
: 8.1)
=(-1+k"'m)InA (y,x) -k X Ind,(x,y.k)
i=1

If A1 and A2 are taking place then the set Q, (y ) is bounded . Forany k> mand ye Q, SIDF
@ (x, y, k) is convex.
Therefore there exists

x(+) =x(3,k) = argmin { ¢ (x,y,k) / xe R*}
and |

PL(x(+),*) = (1-mE A (,x(+)) - %d,"(x(-).-)u.’(x(-» -k (x(+) =0 82)

By setting

4,(+) =4, k) = A x(+ ), (x(#),*) , 1=1,..m (83)
and u(¢) = (u,(¢),i=1,.,m) wecan rewrite (8.2) as follows:

A - ilu,(-)f{(x(-))~~k"[3’5l u,(+) - mIf (5(+)) = 0" 8.4)

45



The following proposition is taking place.

Proposition § . If conditions A1 and A2 are satisfied, then for any monotone increasing sequence
{k,}  k,>m, limk,== and ye Q:

1) the sequence {w (,k,) = (x (», k,), u (. k, ))} is bounded and any limit point (x, u) of

{w (y.k,)} is a K-K-T's pair

L/(xu)=0, uf(x)=0, 4,20, i=1,.,m,

L ¢

ie. x=x',u=u
2) lim @ (x(K, )2k, = 9° = (00 -GN e () =£0) - e (- 9°)
Proof Due to the Corollary 20 (see [FiacM68]p94) it follows from assumptions A1-A2 that the set
le(y) is bounded, therefore in view of the inclusions Qh(y) > Qk’(y) 5.5 Qk‘(y) > ka(y)...
the sequence {x ( , k, )} is bounded for any y € Q.. So it contains a converging subsequence. We
can assume without loosing generality that

lim x(y,k) =x

s-w

It is clear that x depends on y € int Q , we will omit this indication to simplify notations.

Then lim @ (x(+),*) = lim @ (x(3,k,),3,k,) = lim [(-1 +mk, Y In(5() £, (x(+))

E Bl (X )

-1 S (eCD + GO A x(WE +mk ak,
- lim [ -8 (50) - (W £ £ InfGx(+] @9)

Therefore ¥ € Q, moreover x€ 3 ©, i.e. there is at least one index / : f;(x) = 0, otherwise we would
be able to find A > 0:
[0k 24,9, =1,..m

for any large enough £,.
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Therefore using formula (8.3) for the Lagrange multipliers we obtain
lim u (y,k,)=0,i=1,.m
So, from (8.4) we ha:e j[,’ (x)=0 x € Q which is impossible, because (1.1) is a constrained
optimization problem.
Hence, x € 90 and we will assume that 7 = {{:£(x) = 0} is the active set.

Now we want to prove that { u () =u (, k) } is a bounded sequence. Assuming the opposite we

can find i : u,(*) =u, (y, k,) -~ = . Dividing both sides of (8.4) by ) u,(+) we obtain
1=1

(‘f‘; u, (* ) S (x(+)) - fi?l}(-)ff(x(')) kT -mEu (NS E() =00 (3.6)

where u () =u,(¢) (Zy,(*))*,i=1,..,m
Taking a limit in (8.6) we obtain

Tuf/(x)=0and u,20,iel 8.7
andnotall;,=0. “
However, (8.7) is impossible because it contradicts Slater condition (1.2), so {u (y, k,)} is bounded.
Without losing generality we can assume

u = lim u(y.k)
Taking the limit in (8.4) we obtain ~
£/&)-Zuf(x)=0and uf(x)=0,i=1,.,m
Inviewof ueR” and xe Q we have x =x*,u=u" ie. (x,u)isaK-K-T's pair.
To find lim @ (x(3,k,),y.k,) we consider first the passive contraints i :j;(§)> 0.Itis clear
that for ye Q )
limk,* tnf(x(y,k,) =0,i€]l (8.8)
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Now we are going to consider the active constraints keeping in mind the formulas for the Lagrange

multipliers (5.7). We have

. L) - f,(x(+)
su = lim R
O A EAO)

For ;:>° we obtain f,(x(¢)) =0 (k,-l). for ;l-, =0 we have limk, f,(x(¢)) = =, therefire

~-

forany ye Q.
limk, " Inf(x(+)) =0,ie] (8.9)

Using (8.6) and taking into account (8.8) and (8.9) for any y € Q, we obtain
9= 1.13 o (x(0.k,)..k,) = h.i! [-In(50) - fGOE) - “2; Inf(x(.k,)]
= EIE [-n(0) -5, OED] =ln [f,() -f,(x )] . Therefore f(x*) =f,() - *

If for the problem (1.1) the standard second order optimality conditions are satisfied then the
following statement, which is a corollary of the Basic Theorem, is taking place.
Assertion 2  If the second order optimality conditions (1.4) - (1.5) are satisfied, then there exists
k,> 0 such that for any yeQ  and k 2 k, A(y.x") + L 1, > m the following statements are taking
place.
1) there exists a vector

x(»,k) = argmin { ¢ (x,y,k)/x e R*}

such that @/ (x(3,k),3,k) = 0*.
2) for the pair of vectors x(0, k) , u(0, k) = (3,0, 8) = A 0, x(0, k) 4, (k) p,K) i =1,..,m)
the following estimation

max{ [x(,k) -x* 1. lu(n.k) -u* |} sckTAQ,x*) (8.10)
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holds and ¢ > 0 is independent on £ and y.

3) the shifted interior distance function @ (x, y.& ) is strongly convex in a neighborhood of x (, k).

9.'Numgriggl Realization of the MCM  The numerical realization of the MCM requires:
1) to find a "center” yeint Q. ;
2)tofindatriple (y, v, k)eD(*);
3) to replace the infinite procedure of finding 2 = 2(y,u, k) for a finite procedure, which retains the
contractibility properties of the operator C, , .
To find y € int Q , we consider the following convex programming problem
max{x_,, /f(x)-x,,,20,1= 1,.,m} | .1
Starting with a "warm® start (x°,x°,,) : x2,; <min {£,(x°)/1 s 1 sm} we apply any [PM for
solving (9.1) up to the point (X,X,,,) : X,,, 2T, then we set y=X.

To find a triple (y, u, k) € D (+ ) one can again apply an IPM, starting withx =y, u = e,
and k > m and increasing the barrier parameter followed by a Newton step for solving the system
¢'.(x,y k)=0"inx.

The other option is to find an approximation for a vectorx (v, £) 1@, (x (v, k), y, k) = 0",
using smooth unconstrained optimization techniques. In particular, one can use Newton method with
step length, which we will describe later.

Due to Proposition S or Assertion 2 to find (y, 4, k) € D (+) it is enough to find an approxi-
mation for x ( y, k) and u ( y, k) when k > m is large enough.

Also the parameter k > m has to be large enough to guarantee that C, , is a contractive

operator for a given y€ Q ,ie. 0<y,, =ck? A(y x") < 1. The constant ¢ > 0 is associated with
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the input data and the size of the problem and apriori unknown as well as the value A( yx")fora
chosen ye Q..

So there is no explicit way to find for a given 0 <y <1 a "center” y € Q, and k£ > 0 such that
y<cktA(yx )<l

Therefore we have to find an implicit way to adjust y € Q _ and k> 0 to an apriori chosen
0 <y <1 to guarantee the inequality y < c k™ A(y, ¥ ) <1.

First, let's consider for a fixed y€ Q, and k> X u,, a non negative functionv (w, y, k) =
v(xy u k): W,,=Q.@)xU,,~R', which is defined by formula

vonyk) =max (I Gpub) 1, max (£, Eu,17)1)

The following proposition is a consequence of the K-K-T's optimality conditions.
Proposition 6 . For a convex programming problem (1.1), any fixed y € Q,, u € R, and k> 2 u, the
following statement is true

v(x,y,uk)=0 = (x,u)=(x"u*)=w’ 9.2)
Proof . First, v(x,y,u,k) =0 = max{-f,(x)/1sism}<0, ie -f(x)s0 or
f(x)20,i=1,.,msoxeQ.

Second, v(x, y, u, k) =0 - ‘ilu‘ lf(x)|=0,ieu |f(x)]|=0,i=1,.m,

Therefore forany 1 <ism
>0 = fi(x)=0 and f(x)>0 = u4,=0 (9.3)
Third, v(x,y,u,k) =0 = IF,,'(x,y,u,k) |=0

Therefore in view of (9.3) we obtain
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1-k1Lu, AL AP i u, [f (x)-k71f (x)]
L) - f(x) =1 K (x)+f(0) -fo(x)

= A x) (G (x) - Zu f/(x) = 0" and A(3,%)>0

F,’(x,y,u,k) =

Hence, v (x, y, u, k) =0leads to x € Q and L,'(x,u) =0, fiu‘j;(x) =0, ueR}, s
w=(x )= u")=w. ‘

Let's consider the second part of the statement. We have to prove that v (x’, y, ', k) =0.

First, x" € Q , therefore max { - £, (x")/ 1 si s m } < 0, then in view of (x", u")is a K-K-T's
pair, we have T u,” | £, (¢") | = Z " £, (x" ) = 0 and due to the Proposition 2 F”, ( x" y,‘ u' k)=

A (y,x* )L, (x" u")=0" Thereforev(x", y, u’, k)=0.

For a fixed "center” y € Q, and a fixed barrier parameter k> 'Z‘; u,’ one can consider the
non-negative function v(w,y,k) : ¥, , = QO)xU,, - R! as a merit function, which measures
the proximity fromw =(x, u)tow" =(x", u").

Due to the smoothness of f,(x), i =0, 1,...m and boundness of W, , there is a constant L that

viw k) =v(wy,k) -v(w 'y, k)sLlw-w'], VwelW , 94)
Without loosing the generality we can assume that L < 1.

Further, if for a given 0 <y < 1 the "center" y € Q, and the barrier parameter k>0 are

chosen appropriately, i.e. v,,=ck™ A(y, x*) <y <1 then, dueto (6.4) for any u € U, , we have
max{|2-x'], 18-u'llsylu-u‘l
and again i€ Uy.k'

Let's assume that for #° € U, , we have Ju® -4 *| < 1, then MCM (5.6) - (5.7) produces
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a sequence { w' =(x', )} :
max{|x’-x*‘|, lu’-u‘}jlsy’ 9.5)
Then in view of (9.4) we obtain
v(iw'y,E)=v(w'yk)-v(w' yk) <Yy (9.6)
In other words if for a given 0 <y <1 the "center” and the barrier parameter are such, that
Y, SV, then {y* Y7o is a majorant for the sequence {v(w %, 3,k) I, .

We will say that the pair ( y, & ) is consistent with a given ratio 0 <y < 1if (9.6) is taking
place foralls 2 1.

To check the consistency of a chosen pair (y, k) for a given rafio 0 <y <1 one has to solve
infinite number of unconstrained optimization problems. Moreover, each problem requires infinite
number of arithmetic operations.

So, first we will show how to keep the estimation (6.4) without solving an unconstrained opti-
mization problem at every step.

Then we will show that the numerical realization of MCM does not require the consistency
of chosen couple ( y, k) with a given ratio 0 <‘y < 1 from the beginning of the process. We will
achieve the consistency by adopting the barrier parameter in the process of solution.

Let's consider a number 8 >0, k> ¥ u, and a pair (x, y):

1F/xyuk) 10k AGX)d  (xy.B)u-u] 9.7)
We update the Lagrange multipliers by the following formula

u=A(x)d ' (x.p.k)u (9.8)

The following assertion is taking place.
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Assertion 2 Ifthe second order optimality conditions (1.4) - (1-5) are satisfied then for any p >0
and y e Q, there exists such k, > 0 that for any ( y, 4, k) € D (=) the following estimate holds
max{|x-x‘], Ju-u*l}sckta(,x*)(1+0)lu-u"] 9.9)
The estimate (9.9) can be proved by a slight modification of the considerations, which have been use
to prove Lemma 2 ( see[Pol92]).
So the consistency of a couple ( , k) with a given ratio 0 <y < 1 one can check using instead
of (9.6) the following inequality
viw' yk)sy', sz1 (9.10)
where w' = (x*, 4’ ):
IF/(x* e’ B 1s0k A" )dE"" ,y;k) u' -u'| (9.11)
@l =Aa0 ¥ NYd G b | (9.12)
Due to the Assertion 2 for any fixed "center" and a given ratio 0 <y < 1 there exists a threshold
k., xkothatforanyk 2 k, ,wehave ck'A(y,x")(1+0)sy<1 and ueU,, — ueU,.
In other words, fork 2k, , >k andue U, ,:
1) the approximation x that satisfies (9.7) can be found for a finite number of operations;
2) after every Lagrange multipliers update, the distance from the approximation x and u to
x’ and " shrinks by a factor 0 <y < 1,
3) the new vector Lagrange multipliers u belongs to U, . again.
So, the inequality (9.10) holds for any s 2 1, i.e. the fixed couple (y, &) is consistent with a fixed
givenratio0 <y <1.
We would like to emphasize that the convergence of the method (9.11) - (9.12) is not due to

the "center” or barrier parameter update, but rather due to the Lagrange multipliers update.
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Therefore when it comes to numerical realization of the MCM (5.6) - (5.7) the main problem
is to find for a chosen fixed "center” y € Q . and a given ratio 0 <y <1 the threshold &, , > &, that
for any k 2 &, , the couple ( y, k) will be consistent with0 <y <1.

| In the procedure describe below the "merit" function v (w, y, k) is the key element, which
we are going to use to adjust the barrier parameter to the level, which will make (y, k) consistent
with 0 < y < 1 while the "center" y € Q, and the ratio 0 <y <1 are fixed.

To describe the MCM we introduce the Relaxation Operator R : Q,(y) - Q, (v ) by formula

Rx=x
where x is defined by (9.7).

We start with a "center” ye(Qd , we set X = y and W= e, -We choose theratio 0 <y <1
and a monotone increasing sequence { k, } : k,>m , k, <k,  limk == Let e > 0 as the required
accuracy.

Let's assume that the pair ( ¥*, " ) and the barrier parameter k = k, have been found already.

The next approximation (x'*!, u’*!) and k =k, we find using the following operations.

5.
’

) x:=x', u:

x, u=Ax)d\(x,y,k)u;

%I
"
2]

2)
3)  if v(w,yk)se, then x* =X, u* =u and stop;
if v(w,y,k)>¢
4) a) if v(w,y.k)sy*! and k>Tu, , then k =k, X
s+1:=s andgoto 1.
b) if v(w,p.k) sy, but k<sTu, , then k:=k,,, =Xu +1,

V=, x+(1-1,,)y, 1, =max{12>0:y+1(x-y) e Q,()},
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u'*'=u, s+1:=sandgotol.

o if v(wyk)>y'"!, k=max{k, ,EE, +1},
x(s) = argmin {f;(x')/1siss}, 1, =max{12r>0:

y+t(x(s)-y) e Q,}, x:=t,,x(s)+(1-1,,,)y,u=e, andgoto2.

It comes to the point when y and  became consistent with 0 < y < 1, then every application
of the relaxation operator leads to X€ Q,(y) that u=A0,x)d ' (x,yu)e UM.

From this point on the "center" y € Q , and the barrier parameter k= I', is fixed, every
Lagrange multipliers update shrinks the distance from ¥ and utox andu" by afactor 0 <y <1 and
uelU, , ~uelU,,

The numerical realization of the operator R is based on smooth unconstrained minimization
technique.

We will describe it based on Newton Method with a step length for finding an approximation
x for the 2 =2(y,u,k) = argmin { f{x,y,u,k) /x e R"}.

The Newton direction { we find from the system

Fl(x3.u,k){ = -F/(xy,u,k) (9.13)
The step length ¢ we find using Armijo rule. We check the following inequality for 7= 1.
F(x +tL.y,u,k) - F(x,y,u,k) < Vst(F,(x,y,u,k),{) (9.14)
If (9.14) is satisfied we set
x:=x+1( (9.15)
if not, we set 7 : = ¥ ¢ and check (9.14) again up to the point when (9.14) is true, then update x by

formula (S.15) and go to the first phase of the Newton Method - find the Newton's direction {.
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We continue the process (9.13), (9.15) up to the point X, which satisfies (9.7).

Note that if x is within the Newton area of X (), u, k), then it takes only 0 (In In €' ) Newton
steps to get X .

In view that from some point on both the "center” y € Q . and the barrier parameters £ > 0
arefixedand ue U i ue Uy. ; the primal approximation will remain in the Newton area for the
system F”, ( x, y, u, k) = 0 in x after every Lagrange multipliers update.

Such a point we call "hot" start. From this point on at most O (In In e ) Newton steps
requires for every Lagrange multipliers update. Each update shrinks the distance from the current
primal - dual pair (x, #) to the primal - dual solution (x°, 4" ) by a factor 0 <y < 1. So from this
point on it takes O (Ine™ ) -0 (In ln e™ ) to get the approximation to ( x°, 4" ) with acéuracy e>0.

To reach the "hot" start sometimes one has to increase significantly the barrier parameter.

For a very large barrier parameter, the MIDF became close to IDF, so in such case we might
lose the the potential advantages of MIDF.

Also, as it was shown in Section 5, MCM is close to prox method with entropy-like kernel.
It is well known that prox methods converge with linear rate and again to decrease the ratio one has
to increase the parameter.

On the other hand being a Classical Lagrangean for the equivalent problem the MIDF
possesses properties which make them fundamentally different from the Classical Lagrangean
L (x, u) for the initial problem.

Therefore we can expect that the dual function and the dual problem, which is based on
MIDF, might have some interesting properties, which will enable us to improve the convergence

without increasing the barrier parameter.
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In the next section we are going to consider some aspect of the duality theory, which is based

on MIDF.

10. Dual Problems Based on MIDF. The MIDF, as we mentioned above, is a Classical Lagrangian
for a problem, which is equivalent to (1.1), but not every result of the duality theory can be translated
automatically when insfead of the Classical Lagrangians for the initial problem, one considers the
MIDF. The situation at this point is different from the situation with the Modified Barrier Functions
(see [Pol92 ]), which are also Classical Lagrangians for a problem which is equivalent to the initial
problem (1.1).

On the other hand, using MIDF, it is possible to obtain some new important characteristics
for the dual functions and dual problems, which are impossible to obtain by using the Classical
Lagrangians for the initial problem.

We are going to start with the basic optimality criteria for the convex programming problem.
Theorem 3. Let for the convex programming problem (1.1) the Slater condition (1.2) is satisfied ,
then
1) iffor y e intQ and k> O there exists avec;or u'=(u,.., u') 2 0" such that

u'f(x*)=0, 1=1,.,m and F(x,y,u k)2 F(x*yu’k),VxeR*: A(y,x)>0(10])
then the vector x° is a solution ‘of problem (1.1).
2) iffix)eC,i= 0; 1,..,m, and ifx" is a solution of problem (1.1), then there exists u 20
such that (10.1) holds true forany yeint Q and k > X 1/,
3) if(x, ") is a saddle point of the MIDF F(x, y, u k):

F(x,y,u' k)2 F(x*yu*'k)2 F(x"yuk),VxeR :A(y,x)>0,ue R, (102)
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then (x*, «") is the K-K-T's pair for any y € int Q and k> 0.
4) if (x" y°)is a K-K-T's pair then the pair (x°, &) is a saddle point of the MIDF F (x, y, u, k)

foranyyeint Q andk > X u,".

Proof:

1) Let (10.1) holds true, then

-InA (y,x)-k"'Zu [In(kf,(x) +A (1,x)) -InA (y,%)]
2 -nAQx*)-k'Zu'In[kA (3,2 )/(x*)+1)]

=-lnA@x"),

ie.

-InA (y,x) 2 -lnA (y,x*) +k"! in u'eln[kA (1 x)f(x) +1]

In view of A (y, x) > 0 the last ten‘n at the right hand side is non-negative for V x € €, therefore
InA(,x) slnA(y,x*)=f(x) 2/, (x°),VxeQ: A(y,x)>0

and x° is the solution of problem (1.1).

2) ifx"is the solution of problem (1.1), then there exists 4" 2 0" such that ", /, " )=0,r=1,.,m

and L', (x", u* ) = 0", therefore due to the Proposition 2 we have

Fl(x*.yu*k)=A"(px*)L/(x*u*)=0
The MIDF F(x,y,u*,k) =(-1+k 1, )In A (3,x) -k 'Ly, In (kf,(x) + A (y,x)) is convex
functioninx e R*: A (y, x)>O0foranyyeint Q and k > X u,". Therefore F(x,y, u' k)2

F(x' yu' k)foranyxeR*: A(y,x)>0.
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3) if (x°, ") is a saddle point of the F(x, y, u, k), i.e.
-InA (,v,x)-k-l‘i':l u [n(kf(x) +A (3 x) - ln A (%))

2 -InA (y,x‘)-k"‘il u' [n(kf(x*)+A (x ') -InA (5 )]

2 -InA (y,x')-k-“il u[In(kf(x*)+A (5 ") ~lnA (3 *)]
then x* € Q . In fact, suppose the contrary, i.e. there exists /, : j;.(x *) <0, therefore
ln(kj;.(x ‘Y+A(,x*)) <0 foryeint Q and k>0. So by fixing u, =0, 7 # /, and increasing
u, we obtain a contradiction with the right side of the inequality (10.2), so f; ( x*)20i=1,..m.

Now we will prove that if (10.2) holds true, then uf(x')=0,i=1,.,m Infactforu=0
from the right side of (10.2), we obtain ‘f‘; u'ln(kA™' (y,x*)f,(x*) +1) 5 O but we just proved
that £ (x) 2 0, i = 1,.., m, therefore In(kA'(y,x*)fj(x*)+1)20,i=1,.,m and
E:lu,'ln(kA"(y,x‘)j;(x‘)ﬂ)zO, so for any yeint Q and k > 0 we have
‘u,'ln (kA™'(,x *)f,(x*)+1)=0,i=1,.m. Hence uf(x")=0,i=1,..,m and from the left side
of the inequality (10.2) we obtain

-nA(x)2 -lnA(yx*)+k'Zu In(kA (,x)f(x) +1).
In view that for any x € Q : A(Y, x ) > 0 we have ln(kA"(y,x)j;(x) +1) 2 0 we obtain that
-lnA(y,x)2 -lnA(y,x*)or

() ~£(3) s RGO (x4 2f4(x"), VxeQ: A3x)>0
i.e. x° is the solution of problem (1.1).
4) First of all, note that if (x°, u° ) is the K-K-T's pair then x° is the solution of problem (1.1). Using
the same consideration as in 2) we obtain F7,(x", y, u’, k)=0and F(x"y, u k)=lnA(yx")
foranyyeint Q. Taking into account the convexity F (x, y, ', k) in x for any k> ¥ u,” we obtain

F(x,y,u k) 2 F(x"y u k), Vxe Q(y) and dueto the definition of the function
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F(x,y, u, k) we obtain
F(xyu k)2 F(x\yu" k), VxeR:A(y,x)>0
Also k' Tu In(kA (y,x*)f(x*)+1) 20,i=1,..,m. Therefore
F(x*,y,u’k) = -In(H(») -4 (x")
2 -In(f,(») -fo(x'))—k'lr.u‘[ln(kj;(x Y+A(y,x*)-InA (y,x")]
=F(x",y,u k), YVueR",.
So (x", u") is a saddle point of the MIDF F (x, y, 4, k) for any y € int Q and k>X u,” .

We have completed the proof of Theorem 3.

Remark 4 . We want to emphasize again the difference bétween MIDF F (x, y, », k) and MBF
F(x, u, k). The statements 2) and 4) are not true (see Section 7, example 1) without the condition

k>Y u,” while for the MBF (see Theorem 4 [Pol 92]) the statements 1) - 4) are true for any £ > 0.

Now we are going to consider the dual pair constrained optimization problems, which are

based on MIDF. Let y € int Q and k>¥ u, be fixed and ¥ ,(x) = sup F(x,y,u,k). Then

val

) otherwise

In(4(») -4 (x), £40)-£,(¥)>0,/(x)20,i=1,.m
*’.j(x) =

and the initial problem (1.1) reduces to finding
x*=argmin{y ,(x)|xeR" } (10.3)

We define the dual function by the formula ¢ ,(4) = inf F(x,y,u,k). Then the dual to (1.1)
ze*
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problem consists of finding
u* =argmax{@ ,(u)|u20} (10.4)
Due to the definition of ¢, , (x ) and @, , (v ) forany y € int Q and £> 0 we have
-ln(LO) -f (%) = lyy.,(x) 2 ‘P,,g(“) ,VxeQ:A(y,x)>0, uek]
Therefore if ¥ and u are feasible solutions of the primal and dual problems respectively and
¥,,(x)=¥,,(u) then x=x* and u=u".
The smoothness of the dual function ¢ ,, ( ¥ ) depends on the smoothness of f,(x),i=0,
1,...m and convexity properties of the MIDF F(x, y, u, k)inxeR"
The next theorem describes the smoothness properties of the dual function ¢ , ,(#).
Theorem 4. If (1.1) is a convex programming problem, £, (x ) € C,i=0,1,.,m and conditions
(1.3) - (1.5) are satisfied, then there exists k, such that for any fixed y € in-t Q and any fixed k2
kA(yx)+Xu:
1) the concave function ¢ ,, ,( u ) is twice continuously differentiablein U, , .
2) the gradient of the dual function is defined by formula
Pl (¥) = FL RO By, 1.k) = FLR(2),*)
= -k (In(kf, RCNA (3 2(e) + 1), In(Rf, (R(*) A4 0,2(*) +1)) (10.5)
3) the Hessian of ¢ ,, ,( # ) is defined by formula
Oy (0) = ~FLE() ) FZ RN FaB(4)) (106)
where F(2(+),*) = F/(3(¢),*).

Proof : First of all, note that ¢ , ,(u): R," - R is a concave function whether or not the functions

£, (x),i=1,.., m are convex. If the standard second order optimality conditions (1.3) - (1.5) are
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satisfied then due to Theorem 2 the function F ( x, y, u, k) is strongly convex in the neighborhood
of 2=%(yuk) for V(y,uk)eD(s).

Therefore £(y,u,k) = 2(+) is a unique minimum of F(x y, 4, k)inxwhile ¢ ,,(u)=
F(R(y,u,k);y,u,k) is smoothinu €U, ,i.e., there exists the gradient @'y, ,, (4 ) =

F!(R(+),+)+ £, (+) +F.(R(+),*). Taking into account F,(£(),*)=0 we obtain

9P, 1 {(4) ) 0 P4y (4)
du, ~  du,

Plin (@) =F,(R(s),%) =

= -k (kA EENAT 3R +1) 0 KA (RENAT GLR() +1)).

Further £(y,u*,k)=x"* and £,(R(,u",k)) =£;(x*) =0,i=1,..r, therefore
O i (2 ) = -k (I (kA (x VAT (x ) + 1), (KA (x DA (X ) 1),
In(kf,,(x)A (x*) +1),.., n(kf,(x VA (%) + 1)
00, 0.~k In(EAN 3 x ) (5°) + 1) -k IR (RAT (2 WL (5 ) +1)
Since the matrix F(2(+), +) is a positive definite for any fixed y e int Q and k 2k, A( yx')+
T u” the system F", (x, , u, k) =0 yields a unique vector function x (y, , k) such that
F/R0.u,k),5,5,k) » Fl(x(+),*)= 0", VueU,, and 2(y,u"k)=x".
Differentiating the last identity by u we obtain
FIROwWE) a0 2,0,0,8) + FoyR0L0,k),y,u,k) = 0%
therefore

2 0, k) =2, ()= ~(FLR() N 'FL(B(#),*), YueU,,.

Hence
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" = E7(2(e) o o) =
@y (8) = FrB(9),%,() (107)

—FR(9),)FLR(9),*) ' FuB(),*)

Fra(®(e),) = F/LG(2).%) =
~d @) RE EN-A 3R ND(R(NE () 1EF,G(0).
To compute @", ; (4" ) We first consider
Fl@O,u" k) ,yu k) =Fa(x . yu'k)=
-dN(xy B (x) - AT (0 x )D(x)d T (3" Y B)F (x°) =

A"(y,x‘)]’, (0
Q™ d;f,(x . ,y,k)

or.” of,."
/(o ® _A-l , . F . .
[f (D -470 )[0”-’, [diasf,(x'n:-,.l] - )I aoP

then
Doty () SF(xtyut BF 6yt B A (xyu k) = - Fo(Fg) ' Fy

Remark 5. The dual function ¢ (#) = inf L(x,u), which is based on the Classical Lagrangian
xe

L(x,u) for the initial problem is in general nonsmooth under the conditions of Theorem 4. It becomes
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smooth, if, for example, f; (x ) is strongly convex, while the dual function @, ,, ( ), which is based
on the MIDF F (%, y, u, k) is smooth even for the nonconvex programming problem, when along
with (1.3) - (1.5) the growth conditions (see [Pol 92] p. 181) are satisfied and k 2 k, A(y.x )+ L o,

The next theorem establishes the main result of the duality theory which is based on the MIDF.

Theorem 5. Let £, (x ) and all - f; (x ) be convex, then
1) iff(x)eC',i=0,.,m and the Slater condition holds, then the existence of the solution x” of
the primal problem (1.1) implies the existence of the solution 4° of the dual problem (10.4) and
¥, ()= @, (") foranyyeint Q andk>Xu’
2) iff,(x)eC?,i=0,.,mandthe optimality conditions (1.3) - (1.5) are taking place, then the
existence of the solution &€ U, , for the dual problem implies the existenée of the solution x* for
the primal problem and ¥, , (x*) = @, ( ' )foranyyeint Qandk 2k, A(yx")+ L u’.
3)if f,(x)e C*,i=0,..., mand the second order optimality conditions (1.4) - (1.5) are satisfied for
the primal problem, then the corresponding conditions are taking place for the dual problem (10.4)
foranyyeint Q and k2 k,A(yx") + X/
Proof:
1) Let x" be a solution of problem (1.1), then there exists (see Theorem 3) a vector u” such that
(10.1) holds true for any y € int Q and k> ¥ u,". Hence for any u 2 0 we obtain

¢,_,(u *) = min F(x,y,u"*,k) =F(x*,y,u k)=

q'y'g(x‘) ZF(X‘,y,“,k) 2 m F(x:yv")k) = @y.k(u)r Vue R:
ze R

so ' is a solution of the dual problem and ¢, (') =@, ; W )i.e.
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f(x) =f0) e (-9, (1) (109)

foranyyeint Qand k> Xy,
2) Conditions (1.3) - (1.5) imply that the function F (x, y, u, k) is strongly convex (see Theorem 2)
in the neighborhood of % (y,u,k) = argmin {F(x,y,u,k) | x e R* }, therefore the vector X(,u,k)
is unique for any (y, 4, k) e D (*) and because of the smoothness of f,(x), i=0,..., mthe
gradient @', ,.(u) exists.

LetueU " ,be a solution of the dual problem (10.4) and x = x(y,4, k). Then the optimality
conditions for the dual problem (10.4) are fulfilled at u,ie.

Pl iy, (8) = -~k (In(kf,(¥)+A (,%¥) -InA (3,¥) <0, for i: u=0

Ot (¥) = ~K ' (n(kf(X) +A (0, X) -1nA (3,%)=0, for i:u>0
Then u,=0 implies In (Kf,(x)+A (%) -8 (1,3)20 =£(¥) 20 while u,>0 implies
In(kf,(x)+A (1,x))=lnA (x)=f(x) =0, i.e. x e Q and forthe pair (%, u) the complemen-
tarity conditions f| (;);; =0, i=1,.,m hold. Therefore
D1y (W)= ~1nA (,3) -k 1T (In(kf,(¥) +A(1,X) - InA (%)) = -lnA 0.X) =¥, (%)
i.e. for the primal and dual feasible pair (%, u ) we have

‘Py.g(;) = "y'g(;) = "lnA'O’o;)

hencex =x*, u=u".

3) We will now show that the second order optimality conditions hold for the dual problem (10.4)
in the strict form .

~r~ t
First, we note that the gradients e, = (0,..,0,0,., 1,.,0), i=r+1,.m of the active

constraints 4, 2 0, i = + 1,..., m of the dual problem are linearly independent. Later we will prove

that the Lagrange Multipliers, which correspond to the active constraints of the dual problem are
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positive. Along with the linear independence of thee,, i =7 +1,...,m, this forms condition (1.4) for
dual problem (10.4). Now we will prove that the condition type (1.5) is also satisfied for the dual
problem.

Let us consider the Classical Lagrangian L(y. ,)(u,l.) =9, ,)(u) +‘)§ A u, for the dual
problem (10.4). The Hessian of the Classical Lagrangian for the dual problem SL" hu (@A) =
®"(,. b () and the second order optimality condition for the dual problem (10.4) is

(L (8 AV, V) S -R(V,Y), VVER" (v,e)=0,i=r+1,.m, u>0  (10.10)
To prove (10.10) we first consider the matrix F", = F"_ (x, y, «’, k). Taking into account
conditions (1.4) - (1.5) for the primal problem, we obtain from Theorem 1 that

mineigval F_ = pA' (, x)>0 .

forany yeint Qand k 2 k,A(y,x’)+ L, Let

maxeigval { L (x *,u*) +kof'5(x YU, fy(x*)} =M
" Then maxeigval F"_, =MA"" (y, x°), so for any w € R" we obtain

p A GLx ) (w, w)2(F" w,w) 2 M A (5,3 ) (W, W)

—ptAx ) (W, w)s(-F" "} w,w) s - M A (3,3 ) (W, W)

Therefore due to (10.6)

Ly (82 )I%9) = (P yu ()7, V) =

(FA(-FIy ' Fav V) =((~Fg) ' Fav.F,v)
Letv=(v,..,V,), then (v,e,)=0 =v,=0, therefore any vector ve R" (v,e)=0,i=r+1,..m
has the form v = (Vy,..., V,, 0,..., 0) = ( v,y O,...; 0). Therefore, due to (10.8), d'(x,y, k)v=vand
D(x’)v=0" we have

Flx*putb)v=-T(x")d =" y.E)v-A" (% YFI(x*)d 1 (x*,y,k)D(x")v
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= _A-l(y’xu)flf(xa)v
So

(Lo Ay, k) v, v) =((Fa)  Fav,Fav)
< =AM @x WMV (FLv,Fvy=- 07100 IM T (5 (2 ). S0 (3 V)

= AT O x IM T (3 )y (2 )V V)

It follows from (1.4) that the Gram matrix (/(J,)(x Y4 ’(’,')(x *) is nonsingular. Therefore,
mineigval (f(x ") 'gy(x") = 1o >0
and
U (® W )% *) Vs iy ) 2 Bo(Vipys iy ) = Bo((V>¥)

therefore, for ; = A1 (y,x *)M ™! p,> Owe obtain

(L (85 AV V) S = B(V,V), VV:(V,€) =0, i=r+,m
i.e. the condition type (1.5) for the dual problem (10.4) is satisfied.

Also in view of f, (x")>0,i =r+ lr;l we have
A= =@l () =k (kAT (") o f(x7) + 1)> 0, =41, m
which along with the linear independence of the gradientse,, i =r+1,..,m of the active constraints

u,20,i=r+1,.,m, and (10.10) comprise the second order optimality conditions for the dual

problem. We completed the proof of Theorem 5.

Corrollary . The restriction @, (4) = @, ,,(¥) |4,y =~ =u, =0 of the dual function

67



@ 4. n{ % ) to the manifold of the active constraints , =0, i =r + 1,.., m of the dual problem (10.4)
is strongly concave if the conditions of Theorem S are fulfilled.
Remark 6 . Statements 2) and 3) of Theorem 5 are in general not true even for a convex program-
ming problem if the dual function ¢ (u) = inf L(x,u) is based on the Classical Lagrangian
L (x, u) for the initial problem. However, these r:;:l.ts are valid for any k 2 k, A(y,x") + X 4, and
any y € intQ even for a nonconvex programming problem if the conditions (1.3) - (1.5) and growing
conditions (see [ Pol 92 ]p.181) are fulfilled and the dual functions are based on the MIDF
F(x, yuk).
Remark 7 . All statements of Theorem S hold for the Modified Interior Distance Function H (x, y,u.k)
and the corresponding dual function |
h, ,(u) = min {H(x,y,u,k) | x € R*}
with the only difference that instead of (10.9) we have
f(x*) =f0) - hyp(u*)
foranyyeint Qand k> X u/ .
Letyeint Q and k 2 k, A(yx") + X o also let (y, u, k) € D (+). We consider the dual

problem (10.4) in the following form

u* = argmax { F(x,y,u,k) IF,'(x,y,u,k) =0,u20)} (10.11)
(P. Wolfe's duality [Wol 61]), then the MCM method

U F Lyt k) = AT x L (x utt ) =0 (10.12)

u”l=Apx"Yd(x"" yk)u’ (10.13)
is an Interior Point Method for the dual problem (10.11) and the estimation

max{ [x**! -x*], ' -u'lscktAQx)lu’'-u’] (10.14)
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holds true under the conditions of Theorem 2 for any ( y,u°, k) € D (»).
Finally note that the properties of the dual problem (10.4) (see Theorem 5) allows to improve signifi-
cantly estimation (10.14) by using smooth optimization methods for solving the dual problem (10.4)

in a way which is similar to (see [Pol 92], pp.206-208).

11 Concluding Remarks . The Lagrange multipliers, the specific role of the barrier parameter
along with the extension of the feasible set give rise to properties P1 - PS, which makes MIDF
F (x, y, u, k) substantially different from IDF F (x, a ) = F(x, £,(»)).
One can view both MIDF F (x, y, u, k) and IDF F (x, ) as smooth approximations for
a nonsmooth and convex in x€ Q: A(y, x)> 0 function :
A(x,a) =max{ -In( & -f(x)), ~In(a -f(x)+f(x) = l,.;.,m }.
Assuming again In = - = for ¢ s 0 it is easy to see that solving the problem (1.1) is equivalent to
solving the following unconstrained optimization problem
A(x*,a)=min{A(x,&)/xeR"}=-In(a-f(x*))
Therefore the unconstrained minimizers
2(y,u,k) = argmin { F(x,y,u,k)/x € R*}
or
x(a) = argmin{ F(x,a)/x€ R"}
one can view as an approximations for the solution x* . The "quality" of approximations
2(y,u,k) and 2(a) to x" depends on the "quality" of the smooth approximations F (x,y, u, k)
and F(x, «) for the function A (x. a ). It is clear that these approximations are very different.

In case of MIDF F (x, y, u, k) we have lim 2(y,u,k) =x* for any fixed y € int Q and

| Jad
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k>Xu, .
Moreover

lim [F(R(,u,k),y,u.k) - A(x*,a)]=0

In case :);'-F(x, a) we have lim x (a) =x" only when a =f, (¥ ) -~ a* = f, (x"). However

for any fixed "center” y € int Q we have
lim F(x,a) =
x-x*

So, while the MIDF F («x, y, u’, k) is an exact smooth approximation for A (x, a ) at the
solution x° for any fixed "center” y € intQ and any fixed ¥ > L u, IDF F (x, &) does not exist at x°
and

lim [F(x,&) -A(x*,a)] =+,
for any fixed "center” y::int Q.

The "quality” of the approximation F (x, y, 4, k) has a substantial impact on the "quality"
of the MCM (5.6) - (5.7). Method (5.6) - (5.7) converges only due to the Lagrange multipliers
update. Therefore from some point on the function F (x, y, u, k) as well as its gradient and Hessian
in x is not changing much after each Lagrange multipliers update, because lim u‘=u". Being
well conditioned at the primal - dual solution (x°, #*) the Hessian F "; (x, y, u, k) remains
well conditioned in the neighborhood of (x°, u"), so from some point on if ¥’ ! is "well" defined in
terms of Newton method (see[Sm86]) for the system F'(x, y, «, k )= 0" the new approximation x*
will be "well" defined for the system F”.(x, y, # *", k) = 0" and it will remain true up to the end of
the process. Such x* we will call "hot" start ( see[MeIP95]) .Therefore from the "hot” start on it takes

only 0 ( In In e*) Newton steps to find a new primal approximation and update the Lagrange

multipliers.
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Due to the estimation (6.4) every Lagrange multipliers update shrinks the distance from x* and
wtox" and u” by a factor 0 < y < 1. Therefore ittakesonly O(lne?)+0(Inlne")Newton's
step from the "hot” start to the solution.

To reach the *hot" start one can use any of path-following methods (see [NesN94)).

The moment when the above mentioned acceleration begins depends on the triple ( y, u, k).
First of all the triple (y,u,k) has to be in D (¢ ) and let 's assume that v, ,=¢ k' A(y, x" )=y =05,
i e

kzmax{Zr:A(y,x‘).koA(y,x‘)+‘f:‘u,'} (11.1)
The constant ¢ > 0 depends on the norm | d’(';',) R(x*,y,0,k) | and 0 >0, the constant k, depends
( see Assertion 1) on A >0, min { &’ | i=1,.,7 ), max { 4 |i=1,.,r} and mineigval
f ’(’;)(x ) j(J,) (x*). So the value of both ¢ > 0 and &, > 0 depends on the 'ﬁemre" of the nondege-
neracy of the constrained optimization problem.

Recall that in unconstrained optimization the properties of the smooth optimization methods
depend very much on the condition of the Hessian at the solution. One can consider this condition
as the "measure” of nondegeneracy of an unconstrained optimization problem.

The analysis which was undertaken above, highlights the parameters which are responsible
for the nondegeneracy of the constrained optimization problem and the way in which it influences the
complexity of the NMCM. To complete the discussion we will make one more comment.

Due to (11.1) the "hot" start depends very much not only on the "measure” of nondegeneracy
of the constrained optimization problem, but also on the value of £ u,". The sum ¥ u, is critical for
the theory of MIDF ( see Theorem 1-5). On the other hand, ¥ u,” depends on the condition number

of the feasible set, i.e. on & =7, R,' , where r, is the largest radius of the sphere inscribed in Q and
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R, is the smallest radius of the sphere circumscribed around Q.

Recall the the value T u,” is crucial in the theory of exact penalty methods (see [Ber82 ]) .
However, in constrast to the exact penalty function, the MIDF is smooth and for some convex
programming problems possesses the self concordant (see [NesN94] properties whenu = e,

Therefore, the NMCM combines the self-concordant properties of the Shifted Interior
Distance Function which guarantees the polynomial complexity of the Interior Points Methods, with
important local P1 - P5 properties. It allows us to speed up the process in the final stage, to make
the process numerically more stable, and has the potential for improving the complexity bounds at
least for nondegenerate convex problems (see [MelP95]).

Due to (11.1) the moment when the process switches from the first phase to the second
depends on the "measure” of nondegeneracy of the constrained optimization problem as well as on
the condition number of the feasible set.

There are still a number of questions, which have to be answered.

First, we have to understand the behavior of the MCM in the absence of nondegeneracy

assumptions. i

Second, the convergence under the fixed y € int Q and k> ky is in no way a suggestion that
both the "center" and the barrier parameter have to be fixed. To find the optimal strategy for changing
the "center”, the barrier parameter or both is another important issue.

Third, to find conditions, which provide the convergence of the prox-type method (5.12).

Fourth, to specify the MIDF and MCM for LP and QP problems.

Finally, the complexity of the Newton MCM is one of the important and still unanswered

questions.

72



Acknowledgement

I am very grateful to Professor Clovis Gonzaga for several thoughtful comments and

suggestons.
I am thankful to anonymous referees for their comments.

I also would like to express my appreciation to Eileen Count and Angel Manzo for their

excellent work in preparing the manuscript for publication.

73



Appendix
Al. Proof of the Proposition 4 . We consider the Hessian F”_ (x”, y, u’, k) for a fixed y € int Q and
k>0,

F" %,y u®, k) = [(1 = k™ "EuYfoly) = fol) ™ fo(x) — k™ "Zu* (kfix) + o)
= o)) R Ux) = F (N e

= [(1 = k™ "T* YJfo) = o) 2 o) o %) + (1 = k™ B Wfoly) — folx)) ™ ' ox) +
k™ "Eu* (kfLx) + fov) = S0 UF x) = fo ) (kS () = fo "(x)) — k™ 'Eur* (kfix) +
L5 = fo) " K ) = £ o X)) ] x w2

= [(1 — k™ "2t )foly) = fox)) ™ 2 o TF o(x%) + (1 — k™ "B )f(y) — fo(*))™ f "olx*)
+ k7 "R (o) = Sl MK (x*) = fo () (K (x*) = £ o(x*)) —

k™ 'Eut (o) — folx®)) ™ (K ) — fo (=]

= (fo0) = o)™ TR0) = folx*) ™ (o "(x*N Ho ' (x*) — k™ ' Ear* Yfoly) = fo(=*)) ' o

Uo "N (x*) +fo "(x*) — k™ " Tut Uy " (x*) + (o) — folx*)™ " (REw* (" (=*)) i "(x*)

— (o (2T (Bt fy () = @ f (2N fo (@) + k™ @ )fy “(x*) fo “(x*))

— Zut ;1 (x*) + kT Eut ) " (x*)]

Taking into account the K-K-Ts relation f;, (x") = Z 4, f’; (x" ) we obtain
Flxtyu' k) =(f0) - fi(x* D' [Lo(x"u")
00 - SN T E WU () - 0 =& N B G N HG)]

=(0) - £ N LI(x"u") +
KO) LG N RITED U () -5 gy u, iy (x*))
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A-2

Using the same considerations we obtain

H"  (x* y,u®, k) = (f0) = x*)) " [L” , (x*, u®)

+ 2000 = Hx*) T KUy 2 U S (%) = (2 s of o (2 D)1

A2. Formula for the MIDF Hessian F: (R,y,u,k)

F o,y ), s = (1= &7 "2lfo) — )7 L1 0EY o0 + (1 - k™ "2

o (o) = EN ™ £ oF) — k™ "Tuk fAR) + foly) =SB (kST AR) — £ o)) +

k™ Eudk f2) + £30) = BN kS 4R) — F1o D)k £14R) = £7o(2)

= (H0) — @)™ 'Wol) = HEN ™ (' EY oR) — k™ ' Eulf S (XY o))

+/"o®) — k™ @l o(£) — Zuffoly) — HENKAR) + £00) =SB f4R)

+ k™ "Eudfoly) =SBk SLR) + /600) — o)™ o2 + k™ "Eulfoly) — fo(£)

o (kfiR) + /o) = )™ (kAR + /) = KA ' KF (R (D)

— kf' SRV 4R = kf1 TRV &) + £/ RV o )]

= (50 — L&) 'T0) ~ HEN ™ IRV oR) — K Eulf S (R o) +

S70l®) — k™ '@l (&) — B4R + kT @Yo R) +

k™ VEdgk f2) + fo) = L2 P TRV AR) = kf1TERY AR) = k1 TRV (&) + L5 EY o).
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